УДК 550.344.43 ВАРИАЦИИ ПОГЛОЩЕНИЯ ЭНЕРГИИ СЕЙСМИЧЕСКИХ ВОЛН СВЯЗАННЫЕ С ИЗМЕНЕНИЕМ ВУЛКАНИЧЕСКОЙ АКТИВНОСТИ ВУЛКАНА КИЗИМЕН

Лемзиков В. К.¹, Шакирова А. А.², Лемзиков М. В.¹, Гарбузова В. Т.², Ящук В.В.², Дрознин Д. В.²

¹Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский, <u>lemzikov@kscnet.ru</u> ²Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский

Введение

Кизимен (Щапинская сопка) абсолютной высотой 2375 м является действующим вулканом Камчатки. Стратовулкан конической формы. Склоны покрыты рыхлыми пирокластическими образованиями, изрезаны барранкосами, осложнены лавовыми потоками крупноглыбового характера, ледниками и рытвинами. Последнее эксплозивное извержение вулкана происходило в 1928-1929 гг. Все остальное время вплоть до 2010 года вулкан находился в стадии активной фумарольносольфатарной деятельности. В середине ноября 2010 года началось новое извержение вулкана Кизимен, сейсмическая подготовка которого началась в апреле 2009 года. По сейсмическим данным за 2010 – 2013 гг. наблюдались спокойные периоды и периоды режима активизации этого вулкана. Уровень поглощения энергии сейсмических волн в вулканических зонах являются одним из важнейших параметров, характеризующий ее напряженно-деформированное состояние. Для изучения поглощения энергии сейсмических волн вулканических землетрясений в вулканогенных горных породах вулкана Кизимен в данной работе мы используем спектры этих волн, волновые формы которых изменяются в зависимости от влияния на них условий распространения в вулканогенных горных породах. Целью работы является определение параметров вулканогенных горных пород вулкана Кизимен в которых распространяются сейсмических волн вулканических землетрясений с использованием инверсионного метода предложенного в [7].

Исходные данные

В работе использованы вулканические землетрясения очаги, которых сконцентрированы в очень ограниченном пространстве под вулканом Кизимен. Это пространство определяется координатами: $55,0^{\circ} < \phi < 55,3^{\circ}$, $160,1^{\circ} < \lambda < 160,6^{\circ}$, где обозначено ϕ координата с.ш. и λ - в.д. Положение очагов выбранных вулканических землетрясения за 2010-2012 гг. в пространстве показано на рис.1. Хотя облако очагов землетрясений по глубине представляет единое целое, однако в методических целях они в диапазоне глубин под вулканом от -2 до 2 км (среднее значение 0 км)

составляли одну выборку, а в диапазоне – от 2 до 9 км - (среднее значение около 5 км) - другую.

Рис. 1. Карта района исследования (*а* – горизонтальная и *б* – вертикальная проекции). На вкладке черным квадратом показано расположение исследуемого района на карте Камчатки. 1– очаги вулканических землетрясений соответственно в порядке следования за 2010, 2011, 2012₁(1-3), 2012₂(4-8) и 2012₃(8-12 месяцы); 2 – сейсмические станции; 3 – вершина вулкана Кизимен в горизонтальной проекции.

Всего выбрано 116 вулканических землетрясения вулкана Кизимен за 2010-2012 г.г. с очагами на глубине 0 км, а на глубине 5 км – 193. В этих выборках энергетические классы землетрясений находятся в диапазоне от $K_{S1,2}^{\phi_{68}}$ = 5.8 до $K_{S1,2}^{\phi_{68}}$ = 6.3, где $K_{S1,2}^{\phi_{68}}$ - шкала энергетических классов местных землетрясений [4]. Записи радиотелеметрических землетрясений выполнены сетью (PTCC) сейсмических станций Камчатского филиала Геофизической службы (КФ ГС) РАН. Пункты регистрации сейсмических сигналов установлены на склоне и вблизи вулкана: «Кизимен» - KZV, «Тумрок» - ТUМ и «Тумрок-источники» -TUMD (см. рис. 1). На двух станциях: KZV и TUM – установлен трехкомпонентный комплект короткопериодных каналов на базе сейсмометров СМ-3 (T_s = 1.2c) для регистрации скорости смещения грунта в полосе 0.8-20 Гц В работе использовались

сейсмограммы трех сейсмометрических каналов: двух горизонтальных (SHE, SHN) и одного вертикального (SHZ). Станция TUMD модернизирована в 2010 – 2011 гг. и оснащена современными цифровыми сейсмическими датчиками. В числе сейсмометрических каналов у станции TUMD есть два горизонтальных (BHE, BHN) и один вертикальный (BHZ), сейсмограммы этих сейсмометрических каналов использовались в работе.

В работе использовались спектры *S*-волн вулканических землетрясений вулкана Кизимен которые были взяты в небольшом временном интервале на сейсмометрических каналах всех перечисленных станций (см. рис. 1). Выбранный для спектрального анализа участок сейсмограммы, содержащий *S*-волны, не превышал по длительности более 4 сек, также как в работах [1,2]. На рис. 2 приведены примеры волновых форм вулканического землетрясения вулкана Кизимен, которые были получены во время последнего извержения. Интенсивность только *S*-волн на сейсмометрических каналах по всем станциям значительно превышает уровень микросейсм. На каждой станции выделяются вступления *S*-волн, которые только для станции КZV сравнимы по интенсивности с *P*-волнами. Поэтому по оценке сигнал/шум выбор участков поперечных волн для спектрального анализа более предпочтителен по сравнению с участками продольных волн. Обрабатывались записи вулканических землетрясений, у которых уровень полезного сейсмического сигнала *S*-волн не менее

чем в три раза превышал уровень помех, т.е. микросейсм.

Рис. 2. Примеры волновых форм вулканического землетрясения вулкана Кизимен по записям станций KZV, TUMD и TUM,

произошедшего 29 марта 2001 г. в 8:57 UTC, с $K_{S1,2}^{\Phi 68} = 6,1,$ на

глубине H=5,5 км под вулканом Кизимен. На записях всех станций отчетливо видны вступления *P*– и *S*–волн. Отношение сигнал/шум для участков *S*–волн превышает уровень шума в 3 раза. Уровень шума определялся по амплитуде микросейсм в небольшом временном интервале перед вступлением *P*–волн.

Выбранные участки сейсмограмм, содержащие *S*– волны вулканических землетрясений, перед спектральным преобразованием подвергались стандартным процедурам:

удалением нулевого и временного тренда, косинусообразной коррекцией концов анализируемого интервала записи сигнала. Сейсмический сигнал также корректировался на амплитудно-частотную характеристику сейсмометрического канала станции, где была выполнена регистрация. Экспериментальные спектры участков *S*-волн вулканических землетрясений для упрощения моделирования сглаживались кубическим сплайном в диапазоне частот 0.5–18 Гц и сглаженный спектр определялся по точкам 1, 2, 3, 4, 6, 8, 10, 12 Гц.

Метод анализа

Метод анализа приведен в [7], здесь кратко отметим только некоторые основные положения использованного метода. Основа метода заключается в сравнении экспериментальных спектров *S*волн вулканических землетрясений с теоретическими спектрами Брюна [8]. Модельные спектры корректируются на параметры расхождения и поглощения энергии сейсмических волн в среде их распространения. Эти параметры подбираются в заранее известных диапазонах их изменений путем перебора. В качестве поставленных целей, определяются угловая частота f_c очагового спектра вулканического землетрясения и параметры t^* и Q среды. Однако из-за неопределенности этих параметров удовлетворительного решения может быть не получено. В целях упрощения используем следующие обстоятельства. Во-первых, угловая частота f_c очагового спектра только одно значение по записям этого землетрясения всех станций. Во-вторых, для одной станции значения параметров t^* и Q для землетрясений с очагами практически в одном и том же месте должны быть приблизительно равными. Такие допущения значительно упрощают процедуры определения параметров на две подинверсии.

В первой подинверсии определяется угловая частота f_c очагового спектра по записям всех станций с использованием всего диапазона анализируемых частот. В этом случае выполняется подбор угловой частоты модельного спектра Брюна, скорректированный на значения поглощение сейсмических волн, и сравнение его с экспериментальными спектрами записи конкретного землетрясения по всем станциям. Во второй подинверсии уже при определенных значениях угловой

частоты f_c последовательно на фиксированных частотах определялись параметры t^* , Q по набору записей нескольких землетрясений одной станции. В каждом случае выполнялся подбор неизвестных параметров путем перебора и составлялись уравнения.

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_k \end{bmatrix} \cdot \begin{bmatrix} a_{1,1} & 0 & 0 & 0 \\ 0 & a_{2,2} & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & a_{k,k} \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \dots \\ d_k \end{bmatrix}$$
(1)

Столбец d для первой и второй подинверсий обозначает разницу между экспериментальными спектрами S-волн вулканических землетрясений и модельными спектрами. Члены диагонали определяются по соотношению сигнал/шум для каждой записи. Решение уравнений (1) выполняется методом SVD (Singular Value Decomposition) путем минимизиции. В первой подинверсии матричное уравнение составлялось с задачей определения угловой частоты f_c , а во второй - для определения параметров t^* , Q. Процесс нахождения параметров очага и среды повторялся, причем полученные значения в предыдущем решении служили ориентировочными данными для очередного решения. Этот переменный процесс последовательного вычисления первой и второй подинверсий продолжался до тех пор, пока не определялась наиболее оптимальная комбинация параметров, определяющих очаг землетрясений и среду. В нашем конкретном случае выполнялось 3–5 повторений для нахождения удовлетворительного решения.

Рис. 3. Кумулятивный график накопления сейсмической энергии (1) и количества вулканических землетрясений (2) вулкана Кизимен в 2010 – 1012 гг.

В качестве индикатора наилучшего решения при выборе определенной комбинации параметров f_c , t^* , Q использовалось свойство подбора линий к некоторой системе точек в пространстве, указанное в [10], где показано, что к системе точек на плоскости можно подобрать такую линию, для которой сумма расстояний от всех точек до линии будет минимальной.

Активность вулкана Кизимен в 2010 – 2012 гг. постоянно изменялось (рис 3). Выборки вулканических землетрясений выполнялись в соответствии с изменением уровня вулканической и сейсмической активностью вулкана Кизимен. Таким образом, выборка исходных данных является частью методических вопросов обработки. Выборки вулканических землетрясений сделаны в двух диапазонах глубин (как отмечено выше) в соответствии с изменением сейсмической активности вулкана и определяются как: 2010, 2011, 2012₁, 2012₂ и 2012₃.

Результаты и обсуждение

Каждое вулканическое землетрясение вулкана Кизимен имеет характерный только для него очаговый спектр поперечных волн. Этот факт используется для определения угловой частоты f_c очагового спектра S-волн вулканического землетрясения. Для одного вулканического землетрясения вулкана Кизимен, с использованием записей всех трех сейсмических станций: KZV, TUM и TUMD – определяется угловая частота f_c очагового спектра S-волны.

При составлении уравнений необходимо использовать вполне определенные значения параметров поглощения сейсмических волн. Пределы значений станционных поправок t^* и добротностей среды Q при первоначальном расчете принимались по ранее полученным результатам [3, 5, 6, 7, 10]. Пределы значений угловой частоты f_c спектров оцениваются по записям землетрясений. Это часть обработки составляет первую подинверсию.

Вторая подинверсии использовалась для вычисления параметров t^* , Q отдельно на каждой частоте с использованием данных только одной станции. Значение угловой частоты f_c очагового спектра для каждого землетрясения в этом случае используется по результатам первой подинверсии. Уравнение (1) составлялось по записям нескольких землетрясений только одной станции. Значение

станционной поправки t^* должно быть одинаковым для данной станции по записям любых землетрясений. Значение параметра Q по одной станции с очагами, расположенными практически в одном и том же месте полупространства, должны быть так же примерно равными по всем записям вулканических землетрясений. Эти начальные условия упрощают поиск решений в условиях многих неопределенностей. И специально для соблюдения этих условий делались выборки вулканических землетрясений в условиях многих неопределенностей. И специально для соблюдения этих условий делались выборки вулканических землетрясений в улкана Кизимен. С этой целью все вулканические землетрясения с очагами в конусе вулкана Кизимен и до глубины 9 км разделены на две группы с граничной глубиной 2 км. Дополнительное деление их в диапазоне от 2 до 9 км не производилось. Разные результаты для поверхностных вулканических землетрясений, тем более с очагами в конусе вулкана, от таких же с очагами на глубинах 4 – 6 км вполне ожидаемые. Исходные данные позволили сделать эти выборки вулканических землетрясений. Выборка за 2010 год является дополнительной ко всем остальным, так как в этот год работали только две станции. В 2012 году сделаны три выборки вулканических землетрясений, они помечены соответственно индексами. Это определялось различным уровнем сейсмической активности в этом году.

Спектральные станционные поправки t^* характеризуют спектральные свойства осадочного слоя под сейсмической станцией. На графиках рис.4 показаны значения станционных поправок для трех станций по двум диапазонам глубин по всем выборкам.

Рис.4 График спектральных станционных поправок t^* по двум диапазонам глубин для станции KZV, TUM и TUMD по выборкам 2010, 2011, 2012₁, 2012₂ и 2012₃.

Отмечается существенное изменение станционных поправок t^* в 2012 году по сравнению с предыдущими годами для выборок со средней глубиной очагов 5 км. Эти изменения на некоторых частотах превосходят уровень среднеквадратичного отклонения. Эта тенденция отмечается и для выборок со средней глубиной очагов 0 км. Но в этом случае различие статистически плохо подтверждается.

Учитывая, что на концах частотных интервалов возможны искажения, выполним расчет статистической значимости различий станционных поправок t^* для станции KZV по выборкам 2011 и 2012₁ для частоты 6 Гц для выборок со средней глубиной очагов 5 км. Среднее значение для точки 6 Гц для 2011 t^* =0.108, среднее квадратичное отклонение σ = 0.041. Среднее значение для точки 6 Гц для 2012₁ t^* =0.168, среднее

квадратичное отклонение $\sigma = 0.036$. При уровне значимости $\alpha = 0.01$ проверим нулевую гипотезу о том, что средние значения станционных поправок t^* за 2011 и 2012₁ равны. Размеры выборок равны 23 и 27 соответственно. Определим конкурирующую гипотезу о том, что эти средние не равны. По таблицам функций Лапласа находим $z_{kp} = 2.58$. По приведенным данным $z_{haбn} = 4.95$. Так как $z_{haбn} > z_{kp}$ то нулевую гипотезу отвергаем. Средние значения станционных поправок t^* за 2011 и и 2012₁ не равны. Следует отметить, что уменьшение параметра t^* обозначает уменьшение поглощения сейсмических волн в среде, в то же время уменьшение параметра Q обозначает увеличение поглощения сейсмических волн в среде.

Большое увеличение по модулю параметра t^* означает увеличение поглощающих свойств поверхностных слоев вулкана Кизимен в 2012 году по сравнению с предыдущими годами. В августе 2011 года началось существенное увеличение вулканической и сейсмической активности вулкана Кизимен. К сожалению, представленные в работе исходные данные не позволяют проследить за предвестниковыми изменениями параметра t^* в течение 2011 года. Данные после августа 2011 года по техническим причинам практически не обработаны. Но данные за 2012 год показывают, что произошли существенные изменения в поверхностных слоях вулкана Кизимен после августа 2011 года.

Рис.5 Значения параметра добротности Q по станциям вблизи вулкана Кизимен по данным станции KZV по вулканическим землетрясениям с очагами на глубине 5 км.

Представленный метод определения добротности среды, как и многие другие, позволяют определять только среднее значение параметра Q по всему пути сейсмического луча. Поэтому для более дальних гипоцентральных расстояний значение параметра Q больше, так как в этом случае в более глубокие зоны среды проникают сейсмические волны. Таким образом, вполне очевидно, что для станций TUMD и TUM

значение параметра Q по модулю на всех частотах больше по сравнению со станцией KZV. Это отличие в значениях параметра Q по другим станциям по отношению к KZV получено в результате расчетов; больше никаких особых отличий не получено.

На рис. 5 приведена зависимость параметра добротности Q от частоты колебаний сейсмических волн для станции KZV по выборкам со средней глубиной очагов 5 км. При сравнении значений параметров t^* (рис. 4) и Q (рис. 5) не отмечается каких-либо изменений в оценках параметра Q связанных с увеличением вулканической активности вулкана Кизимен во второй половине 2011 года.

Анализа рис. 4 показал, что наиболее сильное влияние на очаговые спектры вулканических землетрясений вулкана Кизимен оказывают грунтовые условия под сейсмическими станциями. Т.е изменение параметра t^* оказывает более существенное влияние на очаговые спектры *S*-волн вулканических землетрясений, чем изменение параметра *Q*. И это вполне понятно, так как анализировались поверхностные вулканические землетрясения, сейсмические волны которых распространяются в поверхностных слоях вулканической зоны вулкана Кизимен.

Заключение

Таким образом, предложенный способ анализа формы спектров вулканических землетрясений позволяет оценить поглощающие свойства вулканогенных горных пород не только на пути распространения сейсмических волн, но и в верхних слоях под станциями (станционные поправки). Получено увеличение поглощающих свойств среды под станцией в период увеличения вулканической активности вулкана Кизимен в августе 2011 и 2012 гг.

Список литературы

1. Горельчик В.И., Гарбузова В.Т. Сейсмичность Ключевского вулкана как отражение современной магматической деятельности // Геодинамика и вулканизм Курило – Камчатской островодужной системы. П – К.: ИВГиГ ДВО РАН, 2001. С. 352 – 370.

2. Горельчик В.И., Чубарова О.С., Гарбузова В.Т. Сейсмичность района Северной группы вулканов Камчатки 1971-1983 гг. // Вулканология и сейсмология. 1995. № 4/5. С. 54 – 75.

3. Лемзиков В.К., Гарбузова В.Т. Метод оценки поглощения сейсмических волн местных вулканических землетрясений под вулканом Ключевской // Тез. докл. Ежегодная конференция, посвященная дню вулканолога, 30 – 31 марта 2009 года. П–К.: ИВиС ДВО РАН, 2010. С. 167–177.

4. Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука. 1972. 116 с.

5. Andrews D.J. Objective determination of source parameters and similarity of earthquakes of different size // Earthquakes Source Mechanics. W.:American Geophysical Union, 1986. P. 259 – 267.

6. Anderson J.G. Implication of attenuation for studies of the earthquake source // Earthquakes Source Mechanics. W::American Geophysical Union, 1986. P. 311 – 319.

7. Boatwright J., Fletcher J.B., Fumal T.E. A general inversion scheme for source, site and propagation characteristics using multiply recorded sets of moderate-sized earthquakes // Bulleten Seismological Society of the American. 1991. V. 81. N_{0} 5. P. 1754 – 1782.

8. Brune J. Tectonic stress and the spectra of seismic shear waves from earthquakes // Journal of Geophysical Research. 1970. V.75. № 6. P. 4997 – 5009.

9. Hough S.E., Anderson J.G., Brune J. et al. Attenuation near Anza, California // Bulleten Seismological Society of the American. 1988. V. 78. № 2. P. 672 – 691.

10. Pearson K. On lines and planes of closest fit systems of points in space // Philosophical Magazin. 1901. № 2. P. 559 – 572.