ПЕРВЫЕ РЕЗУЛЬТАТЫ ИССЛЕНОВАНИЙ СЕЙСМИЧНОСТИ РАЙОНА ТРЕЩИННОГО ТОЛБАЧИНСКОГО ИЗВЕРЖЕНИЯ 2012-2013 ГГ. ПО ДАННЫМ ВРЕМЕННОЙ ЛОКАЛЬНОЙ СЕТИ

Салтыков В.А.¹, Кугаенко Ю.А.¹, Коновалова А.А.¹, Абкадыров И.Ф.², Воропаев П.В.¹

¹ Камчатский филиал Геофизической службы РАН, г. Петропавловск-Камчатский, salt@emsd.ru ² Институт Вулканологии и Сейсмологии ДВО РАН, г. Петропавловск-Камчатский,

В начале января 2013 г. в южной части Ключевской группы вулканов силами Камчатского филиала Геофизической службы РАН (КФ ГС РАН) и Института вулканологии и сейсмологии (ИВиС) ДВО РАН была развернута временная сеть автономных сейсмических станций (рис. 1, табл. 1). Расстановка ориентирована на усиление региональной системы сейсмологических наблюдений в районе нового трещинного Толбачинского извержения 2012-2013 гг. и южной части Ключевской группы вулканов в целом и получение новых данных о сейсмичности на более низком энергетическом уровне, чем это позволяет камчатская региональная сеть. Региональная сеть сейсмических станций Камчатки [6] обеспечивает уровень надежной регистрации землетрясений Ключевской группы вулканов Кs=4.5-5.0 (Кs – класс по энергетической классификации [5]).

Временная сеть состоит из широкополосных трехкомпонентных сейсмометров GURALP CMG-6TD (частотный диапазон 0.03-100 Гц), сочетающих функции датчика и цифрового регистратора, и обеспечивающих достаточный срок автономной регистрации (не менее пяти месяцев непрерывной работы при частоте оцифровки 100 отсчетов в секунду). Установка временной сети позволила довести расчетный уровень надежной регистрации для района «Вулкан Плоский Толбачик – Толбачинский Дол – новое трещинное Толбачинское извержение» до Ks=3.5÷4.0.

Сейсмичность, сопровождавшая первые недели извержения, до начала работы временной сети, показана на рис. Зб. Привлекает внимание пространственная группируемость землетрясений. Сейсмичность отображает процессы, связанные с динамикой магматической питающей системы вулкана. Пространственно разобщенной активностью охвачены вулкан Плоский Толбачик и зона извержения. Кроме этого сформировалось отдельное облако эпицентров в Толудской эпицентральной зоне, описанной в работе [1], в долине реки Толуд (здесь зарегистрировано наиболее сильное землетрясение с *K*s=11.3). Наиболее глубокие события группируются у юго-западного склона вулканического массива Зимина.

Рис. 1. Сеть сейсмических станций в районе Ключевской группы вулканов. 1 – региональные станции, 2 – временные станции, 3 – контуры надежной регистрации землетрясений, 4 – трещинное Толбачинской извержение 2012-2013 гг. Номерами на карте слева обозначены вулканы: 1 – Ключевсой, 2 – Камень, 3 – Безымянный, 4 – Средний, 5 – Крестовский, 6 – Ушковский, 7а – Острый Толбачик, 7б – Плоский Толбачик, 8 – Большая Зимина, 9 – Малая Зимина, 10 – Большая Удина, 11 – Малая Удина.

Таблица 1. Е	Временные сейсмические	станции в Толбачинской в	вулканической зоне в	в 2013 г. ((рис.1)
--------------	------------------------	--------------------------	----------------------	-------------	---------

Название, расстояние до извержения	Время работы	Координаты, высота	Описание места установки станции
Толуд		55.74990°	Долина реки Толуд. Постановка в мерзлый почвенно-
	C 06.01.2013	160.42203°	пирокластический чехол на металлический диск.
7 км		988 м	Заглубление 30-40 см.
Каменистая	07.01.2013 -	55.75663°	Северо-западная часть Толбачинского Дола.
	23 05 2013	160.24738°	Постановка на сейсмопостамент региональной станции
4.5 км	25.05.2015	1053 м	«Каменистая», в специализированный бункер.
Звездя	200340		Южная часть Толбачинского Дола. Лавовая пещера в
эвсэда	07 01 2013-	55.64156°	голоценовом конусе Звезда. Постановка в ответвление
15 км	23.05.2013	160.21702°	большого грота пещеры. Сейсмометр установлен на дно
10 101	2010012010	651 м	лавовой трубы. Антенна GPS выведена на борт кратера
			Звезда.
Перевал	07.01.2013-	55.91182°	Толбачинский перевал (Центральная часть Ключевской
	24.04.2013	160.53815°	группы вулканов). Постановка на сейсмопостамент, в
21.5 км		1633 м	специализированный бункер.
Дом		55.87182 160.36708° 1596 м	Северный склон вулкана Плоский Толбачик. Постановка в
гляциологов	22.01.2013 -		мерзлый шлак. Заглубление около 30 см. Станция
	23.05.2013		установлена на металлический диск, засыпана песком и
12 км			накрыта деревянным коробом.
			Район извержения - 1,5 км к востоку от северного края
St1		55.77682°	трещины. Мощность снежного покрова около 120 см.
	23.01.2013 -	160.34513°	Постановка поверхностная на стальной диск в мерзлый
2 км	08.02.2013	1757 м	шлак. Заглубление 15 см. Станция накрыта защитным
			термоизолирующим пенопластовым коробом и засыпана
			снегом.
S.(2)			Раион извержения - 5 км к юго-востоку от южного края
St2	24.01.2012	55.72482°	трещины и прорыва Наооко. Снежный покров отсутствует.
4.5	24.01.2013 -	160.31985°	Северо-западный склон конуса Старик. Постановка на
4.3 км	15.02.2013	1280 м	стальнои диск в мерзлыи шлак, заглуоление около 40 см.
			Сверху место постановки накрыто орезентовым тентом и
F 1		55.602	засыпано камнями и снегом.
База І	C 22 05 2012	55.693	Восточныи склон 1 олоачинского дола. Растительность
0	C 23.05.2013	160.308	отсутствует. 1 рунт – шлак. Сеисмометр установлен на
8 км		1032 м	шлакоолок в яму глуоинои около 50 см.

Рис. 2. Выделение в спектре сейсмической записи возмущений, обусловленных извержением.

Сопоставление спектров записей станций St1 и St2 co спектром записи, полученной в районе Толбачинского Дола перед извержением, позволило оценить полосу частот вулканического дрожания: 0.5-15 Гц (рис.2). Превышение уровня сигнала в спектре достигает 60 дБ, что соответствует увеличению амплитуды в 10³ раз в ближайшей к извержению зоне. Спектральный максимум приходится на диапазон частот 1-4 Гц. Эта информация учитывалась для выделения землетрясений при обработке сейсмических записей, осложненных интенсивным вулканическим дрожанием.

Особенностью записей St1 и St2 является преобладание амплитуды вертикальных каналов над горизонтальными (примерно в 2 раза по дисперсии). Это позволяет предположить, что источник сигнала заглублен и в записи присутствуют объемные волны (это предположение требует специальной проверки). Превышение N-компоненты над Е-компонентой на St2 соответствует направлению на источник (извержение). Этот эффект отсутствует на St1, так как расстояние до прорыва сопоставимо с размерами области эруптивной

Рис. 3. Сейсмичность в районе вулканического массива Толбачик и Толбачинского Дола по данным каталога КФ ГС РАН для Ключевской группы вулканов. а – с 01.01.1999 г. – по 26.11.2012 г., до начала нового трещинного Толбачинского извержения. б – сейсмичность, сопровождавшая первые недели извержения, с 27.11.2013 г. по 05.01.2013 г. (т.е. до начала работы дополнительной временной сети станций). Пунктир – трещинная зона извержения.

Рис. 4. Сейсмичность в районе вулканического массива Толбачик и Толбачинского Дола с 06.01.2013 по 27.08.2013. а - по данным региональной сети сейсмических станций (каталог КФ ГС РАН для Ключевской группы вулканов), б – те же землетрясения при дополнении региональной сети временными станциями. Треугольниками отмечены временные сейсмические станции, участвовавшие в расчетах гипоцентрии, и региональная станция «Каменистая» (KMN). Пунктир –трещинная зона извержения. Зоны концентрации эпицентров (**I** и **II**) описаны в тексте.

деятельности. При анализе поляризации сигнала на St2 азимут направления на источник стабилен и тяготеет к направлению на север. Для St1 азимут нестабилен и колеблется в диапазоне 220-290 град., что свидетельствует о протяженном источнике или миграции источника дрожания вдоль трещины.

В настоящее время выполнен первый этап исследований. Проведен перерасчет гипоцентров землетрясений, зарегистрированных в Толбачинской вулканической зоне с 06.01.2013 по 27.08.2013, с привлечением дополнительных данных, полученных временной сетью (рис.4). Для указанного промежутка времени для района, представленного на рис. 4, в диапазоне глубин до 30 км из каталога Ключевской группы вулканов выделено 67 событий с энергетическим классом K_s =4.2÷8.5. Определение вступлений объемных волн и расчеты гипоцентров производились нами с помощью интерактивной программы DIMAS [2] с использованием скоростной модели, описанной в [4], что соответствует средствам, использующимся в КФ ГС РАН для обработки землетрясений Ключевской группы вулканов. Привлечение дополнительных станций позволило уменьшить невязки решений при определении эпицентра с 4±2 км до 2±2 км, при определении глубины - с 3±2 км до 2±1 км. Переопределение классов на данном этапе работ не проводилось.

Эпицентры землетрясений указанного района по данным региональной сети представлены на рис. 4-а. На рис. 4-б нанесены те же землетрясения, но при дополнении региональной сети временными станциями. Сходной чертой обоих карт и важной особенностью трещинного Толбачинского извержения (в период с января по август 2013 г.) является отсутствие землетрясений K_s=5÷8, пространственно связанных с районом прорыва. Однако в записях ближайших к извержению временных станций выделены более слабые события, в том числе серии квазипериодических локальных землетрясений, с которыми мы продолжаем работать. В остальном карты существенно различаются между собой. По данным временной сети выделены компактные области пространственной концентрации эпицентров (I и II). Одна из них (I) расположена к юго-востоку от вулкана Плоский Толбачик, у его подножия, в пределах Толбачинского Дола. Возможно, это место потенциального или несостоявшегося прорыва на одном из лучей «структурного веера», отходящего от периферического очага вулкана Плоский Толбачик [3]. Вторая область концентрации эпицентров (II) захватывает западную и юго-западную часть вулканического массива Зимина, который считается недействующим. Обе выделенные области требуют обратить на себя более пристальное внимание в контексте оценки вулканоопасности. Часть переопределенных гипоцентров переместилась на вулкан Плоский Толбачик. Толудская эпицентральная зона освободилась от эпицентров, которые при привлечении данных дополнительных станций сместились к подножию вулкана Плоский Толбачик. Это позволяет предположить, что облако эпицентров Толудской эпицентральной зоны (рис. 3-б) является артефактом и на самом деле находится севернее, в зоне *I*.

Интересной особенностью сейсмичности Толбачинской вулканической зоны в 2013 г. являются сейсмические события, связанные с разрушением тела и кровли обширного нового лавового поля. Звуки, связанные с этими процессами, были слышны на расстоянии в несколько километров. Кроме того, под действием толщи новой излившейся лавы имело место разрушение (растрескивание) более древних лавово-пирокластических отложений, некоторые из таких трещин можно визуально наблюдать на дневной поверхности вблизи лавовых потоков.

Организация дополнительных сейсмологических наблюдений за районом Трещинного Толбачинского извержения 2012-2013 гг. осуществлена при финансовой поддержке Президиума РАН. Обслуживание временной сети и исследования сейсмичности поддержаны научными проектами РФФИ 13-05-10033, 13-05-00117.

Список литературы

1. Большое трещинное Толбачинское извержение. М.:Наука, 1984. 637 с.

2. Дрознин Д.В., Дрознина С.Я. Интерактивная программа обработки сейсмических сигналов DIMAS // Сейсмические приборы. 2010. Т. 46. № 3. С. 22-34.

3. Ермаков В.А., Гонтовая Л. И., Сенюков С.Л. Предварительная тектоно-магматическая модель Нового Толбачинского извержения, основанная на геолого-структурных и геофизических данных // Вулканизм и связанные с ним процкссы. Тезисы докладов. Петропавловск-Камчатский: ИВиС ДВО РАН, 2013. С. 76-77.

4. Сенюков С.Л. Мониторинг активности вулканов Камчатки дистанционными средствами наблюдений в 2000-2004 гг. // Вулканология и сейсмология. 2006. № 3. С.68-78.

5. Федотов С.А. Энергетическая классификация курило-камчатских землетрясений и проблема магнитуд. М.: Наука, 1972. 116 с.

6. Чебров В.Н., Дрознин Д.В., Кугаенко Ю.А., Левина В.И., Сенюков С.Л., Сергеев В.А., Шевченко Ю.В., Ящук В.В. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология. 2013. № 1. С. 18-40.