

Проблемы:

- отсутствие должного финансирования;
- отсутствие научно-исследовательских рейсов;
- отсутствие должной координации исследований;
- отсутствие современной аппаратуры;
- отсутствие должного программного обеспечения;
- кадровый состав
- комплексного геофизического:
- эхолотный промер;
- непрерывное сейсмоакустическое профилирование;
- гидромагнитная съемка
- мониторинга: рейсы НИС «Вулканолог» в 1981-91 гг., полевые работы на вулкане Алаид в 2007-08 гг. и в 2013 г.
- Дальнего Восток России: Курильская островная дуга

ИНТЕРПРЕТАЦИОННАЯ ТЕХНОЛОГИЯ МОДЕЛИРОВАНИЯ МАГНИТНЫХ ПОЛЕЙ ПОДВОДНЫХ ВУЛКАНОВ КУРИЛЬСКОЙ ОСТРОВНОЙ ДУГИ

> Ю.И. Блох¹, В.И. Бондаренко², А.С. Долгаль³, П.Н. Новикова³, В.А. Рашидов⁴, А.А. Трусов⁵

> > ¹Москва;

²Костромской ГУ им. Н.А. Некрасова, г. Кострома;
³Горный институт УрО РАН, г. Пермь;
⁴Институт вулканологии и сейсмологии ДВО РАН,
г. Петропавловск-Камчатский;
⁵ЗАО «ГНПП Аэрогеофизика», г. Москва

Блох Ю.И. (Москва)

Бондаренко В.И. (КГУ им. Н.А. Некрасова, Кострома)

Долгаль А.С. (ГИ УрО РАН, ПГУ, Пермь)

Новикова П.Н. (ГИ УрО РАН , Пермь)

Рашидов В.А. (ИВиС ДВО РАН, Петропавловск-Камчатский)

Трусов А.А. (ЗАО «ГНПП Аэрогеофизика», Москва)

Курильская островная дуга

Курильская островная дуга – классическая двойная дуга, состоящая из внутренней (вулканической) и внешней (тектонической) дуг, разделенных междуговым трогом, Охотоморский склон которой осложнен подводными вулканами

Изученные подводные вулканы Курильской островной дуги

Подводные вулканы 2.7-2.8 (нерегулярные сети измерения)

Схема строения поперечной вулканической зоны Маканруши

Аномальное магнитное поле ΔТа поперечной вулканической зоны Маканруши

Для нерегулярной сети наблюдений погрешности интерполяции при восстановлении данных гидромагнитной съемки в узлах регулярной сети могут на порядок превышать погрешности самой съемки, поэтому выполнение такого преобразования поля является совершенно недопустимым. Применение даже самых совершенных алгоритмов для моделирования интерполированных и тем самым заведомо искаженных данных, в силу неустойчивости решения обратных задач чревато самыми непредсказуемыми ошибками.

а – поле, построенное на основе интерполяции по алгоритму «обратного расстояния»

 б – поле, построенное на основе интерполяции по алгоритму «минимальной кривизны»

6 — разность
интерполированных полей

Подводный вулкан Миронова

Разработанная оригинальная интерпретационная технология моделирования данных гидромагнитной съемки (ГМС), выполненной на весьма нерегулярной сети наблюдений в комплексе с эхолотным промером, непрерывным сейсмоакустическим профилированием (НСП), анализом естественной остаточной намагниченности и химического состава драгированных горных пород успешно применяется авторским коллективом для изучения подводных вулканов Курильской островной дуги. В разработанной технологии применяются различные методы интерпретации материалов ГМС, одни из которых ориентированы на 2D и 2.5D анализ магнитного поля на отдельных галсах, а другие на 3D анализ по всему массиву наблюдений. Технология принципиально избегает любых операций с интерполированными значениями поля и выполняется с учетом фактического пространственного расположения точек ΓMC.

Для уточнения глубинного строения подводных вулканов используются:

анализ особых точек – система СИНГУЛЯР (методы В.Н. Страхова, В.М. Березкина и Г.А. Трошкова);

1) определение направления вектора намагниченности горных пород – программа ИГЛА;

- 2) 3D-моделирование вулканической постройки программа REIST;
- 3) томографический анализ;
- 4) монтажный метод решения обратной задачи магнитометрии (O3M);

5) построение 3D-интерполяционных моделей по результатам моделирования монтажным методом

Проведение в комплексе с ГМС эхолотного промера и НСП дает возможность при моделировании магнитных полей подводных вулканов использовать истинный рельеф вулканических построек с учетом погребенного под современными осадками основания. Этот аспект моделирования применяется на всех его этапах, как и результаты изучения магнитных свойств драгированных образцов и их химического состава.

Подводный вулкан Макарова

Массив Рикорда сложен массивными базальтами и андезибазальтами. Встречаются андезиты, а в привершинной части имеется экструзия дацитов

МАГНИТНЫЕ СВОЙСТВА ПОРОД, СЛАГАЮЩИХ ПОДВОДНЫЙ ВУЛКАНИЧЕСКИЙ МАССИВ РИКОРДА

№ п/п	Коли- чество образцо в	Горная порода	Диапазон изменения остаточной намагничен- ности, Jn, A/м	Диапазон изменения магнитной восприим- чивости æ, 10 ⁻³ СИ
1	10	Базальт	5,02- <mark>9</mark> ,97	3,08-13,40
2	5	Андези- базальт	3,83-4,09	8,92-9,2
3	4	Андезит	0,18-0,59	7,63-20,40

Подводный массив Рикорда

ХИМИЧЕСКИЙ СОСТАВ ПОРОД СЛАГАЮЩИХ ПОДВОДНЫЙ ВУЛКАНИЧЕСКИЙ МАССИВ РИКОРДА

							_			_			
	4.6 (Рикорда)												
		Образец											
Компо- нент	B25- 32/3	B25- 32/2	B25- 32/5	B25- 32/6	B25- 32/4	B25- 32/II	B25- 32/12	B25- 32/I	B25- 32/I6	B25- 32/I5	B25- 32/9	B25- 32/7	B25- 32/I3
	209	210	2II	212	214	214	215	216	217	218	219	220	22I
S10,	48,69	49,86	50,00	50,05	50,16	50,54	50,62	55,II	56,45	57,45	59,0I	60,48	6I,28
T10,	0,66	0,84	I,OI	I,02	0,95	0,70	0,82	0,80	0,72	0,86	0,79	I,I9	0,74
A1,03	17,82	17,68	17,99	18,63	I8,92	19,57	19,40	I6,9I	17,05	I6,79	17,93	15,23	17,57
Feg03	3,76	2,56	3,61	3,33	3,95	2,46	3,62	2,25	3,12	3,50	2,29	3,12	5,6I
Fe0	7,00	7,99	7,63	7,27	6,47	7,04	6,18	6,02	4,99	5,7I	4,63	5,66	I,II
MnO	0,17	0,17	0,20	0,17	0,18	0,17	0,17	0,15	0,16	0,17	0.13	0,17	0,14
MgO	7,32	6,33	4,84	4,38	4,69	4,97	4,29	4,82	3,83	3,4I	2,16	2,2I	I,62
CaO	II,77	II,03	I0,38	II,2I	II,I3	II,46	II,63	8,77	7,19	7,62	7,78	6,63	6,83
Na ₂ 0	I,74	2,16	2,67	2,25	2,42	2,2I	2,10	2,84	3,23	3,44	3,36	3,57	3,80
K ₂ O	0,16	0,32	0,32	0,34	0,19	0,22	0,32	0,94	0,70	0,66	0,95	0,99	0,68
P205	0,06	0,II	0,27	0,14	0,13	0,07	0,15	0,15	0,16	0,15	0,19	0,24	0,16
п.п.п.	0,22	0,25	0,45	0,50	0,19	0,10	0,18	0,67	I,98	0,30	0,38	0,03	0,3I
Сумма	99,38	99,30	99,38	99,29	99,37	99,32	99,47	99,46	99,60	99,48	99,6I	99,52	99,87
Rb	5	7	6	7	5	6	9	17	II	IO	17	16	IO
14 0	394	6	0.05	5	5	5	4	6	13	7	5	6	5

Подводный вулкан Крылатка

Интерпретация начинается с 2.5D моделирования и анализа особых точек функций, описывающих аномальные магнитные поля на отдельных галсах, с помощью интегрированной системы СИНГУЛЯР,

Рельеф и аномальное магнитное поле ΔТа

2.5D магнитное моделирование

Подводный вулкан Крылатка

Изображение, синтезированное системой СИНГУЛЯР для локализации особых точек функции, описывающей аномальное магнитное поле ΔТа, с наложенным рельефом дна по данным эхолотных промеров

Полученные результаты показали приуроченность основных особенностей функций, описывающих аномальные поля, к верхней кромке вулканических пород. Помимо этого, методы особых точек позволили предположить наличие на глубине около 1 км периферического магматического очага.

Подводный вулкан Миронова

На втором этапе определяют усредненное направление вектора суммарной намагниченности вулканической постройки. Для этого в интерактивно задаваемом интерпретационном окне находят компоненты ее магнитного момента с помощью программы ИГЛА предназначенной для экспресс-интерпретации локальных аномалий гравитационного и магнитного полей.

Вектор намагниченности пород отклонен от нормального поля к востоку в среднем на угол около 16°. Далее выполняется 3D-моделирование вулканической постройки с помощью программы REIST из пакета СИГМА-3D С ее помощью по всему массиву исходных данных проводится аппроксимация источников магнитного поля на базе модели субгоризонтального слоя с латерально изменяющейся по модулю намагниченностью. Верхняя кромка слоя задается по данным эхолотного промера и НСП, а нижняя, как правило, принимается горизонтальной и ее глубина задается исходя из анализа особых точек, предварительного 2.5D моделирования и расчетов с программой ИГЛА. Поскольку геометрия аппроксимирующего слоя известна заранее, как и направление вектора намагниченности пород, определение изменения модуля намагниченности по латерали по отношению к некоторой точке, обычно задаваемой в центре интерпретационного участка, осуществляется единственным образом.

Подводный вулкан Макарова

Интересной особенностью результатов интерпретации является кольцо изометричных минимумов намагниченности, оконтуривающих основание вулкана и приуроченных к небольшим локальным положительным структурам. Возможно, эти локальные структуры являются побочными конусами, возникшими в результате извержений из боковых каналов.

Погрешность подбора аномального поля составила ± 8.1 нТл.

а – батиметрия;

б – аномальное магнитное поле ΔТа;
в – распределение эффективной намагниченности вулкана;
г – распределение эффективной

намагниченности, изображенное на поверхности вулкана

Трехмерное моделирование вулканической постройки

На заключительном этапе для изучения глубинного строения вулканических построек применяются интерпретационная томография аномального магнитного поля и монтажный метод решения обратной задачи магниторазведки (ОЗМ), что позволяет приближенно оценить распределение намагниченности геологической среде и в первом приближении дифференцировать различные блоки в вулканической постройке. Результаты интерпретационной томографии служат априорной информацией при решении ОЗМ монтажным методом. Моделирование проводится в 2.5D варианте с учетом линейного регионального фона в измеренных значениях поля, по каждому из галсов. При этом получается серия эквивалентных решений ОЗМ, соответствующих определенному интервалу допустимых значений невязки наблюденного и модельного магнитных полей. Наиболее реалистичный вариант визуализируется в виде интерполяционной 3Dмодели магнитовозмущающих тел, отражающих объемную конфигурацию и положение застывшей магматической системы.

Подводный вулкан Миронова

Интерпретационная томография магнитного поля вулкана Миронова (*a*) и результаты решения обратной задачи магниторазведки монтажным методом для профилей АА', ББ' и ВВ' (*б-г*): 1 - исходное поле; 2 - модельное поле. Намагниченность объекта - 2 А/м; снят линейный региональный фон Y = 4.95X – 180.5 (Y в нТл, X в км).

Подводный вулкан Миронова

3D-модель магнитовозмущающих тел, отражающую объемную конфигурацию и простирание предполагаемой застывшей магматической системы

Авторским коллективом, состоящим из представителей классических отечественных геофизических школ: МГРИ-РГГРУ, МГУ, Свердловского горного института и Пермского национального государственного исследовательского университета, успешно выполнены интеграция вузовской, академической и отраслевой науки организаций Москвы, Костромы, Перми и Петропавловска-Камчатского и привлечение аспирантов для выполнения фундаментальных научных исследований при изучении подводных вулканов Курильской островной дуги.

Моделирование магнитных полей с помощью разработанной интерпретационной технологии оказалось весьма эффективным. С его помощью в пределах подводных вулканических построек выявлены вершинные кальдеры, побочные лавовые конусы, экструзивные купола и периферические магматические очаги. Выделены отдельные лавовые потоки и определено положение подводящих каналов. Определены местоположения активных вулканических центров и оконтурены магнитовозмущающие объекты, которые отождествляются с застывшими питающими системами вулканов.

Работа выполнена при поддержке РФФИ (проекты 12-05-00156-а, 12-05-00414-а, 12-05-31138-мол_а).

Образцы	Порода	NRM, A/m	К*10 ⁻ ³ , ед. СИ	Р'	Bcr, мТл	В0.5, мТл	Mrs/ Ms	Струк -тура
Григорьева B11-52/5	Афировый базальт	18.9	49.41	1.01 9	26	70	0.128	PSD
Григорьева B11-52/6	Афировый базальт	15.31	20.09	1.01 7	17	89	0.285	PSD
Григорьева B11-52/22	Порфиро- вый базальт	4.12	50.4	1.01 7	22	35	0.071	PSD
Юбилейный В24-2/4	Порфиро- вый андези- базальт	3.08	36.23	1.02 5	22	70	0.101	PSD
Юбилейный В24-2/7	Порфиро- вый андези- базальт	5.32	31.47	1.01 9	18	>100	0.060	PSD
Юбилейный В24-2/12а	Порфиро- вый андези- базальт	1.91	36.92	1.02 3	17	90	0.033	MD
Юбилейный B24-31/4	Порфиро- вый Андези- базальт	0.25	39.19	1.04 9	8	75	0.049	MD
Юбилейный В24-32/5	Порфиро- вый базальт	0.39	40.60	1.02 9	18	7	0.020	MD

Примечание: NRM – естественная остаточная намагниченность; К – магнитная восприимчивость; Р' – степень анизотропии магнитной восприимчивости; В_{сг} – остаточная коэрцитивная сила; В_{0.5} – медианное поле Mrs – остаточная намагниченность насыщения; Ms – намагниченность насыщения; SD – однодоменные зёрна; PSD – псевдооднодоменные зёрна; MD – многодоменные зёрна

Схема распространения оползневых отложений и крупных активных подводных каньонов в пределах Курильской островной дуги

1 – участки распространения оползневых отложений; 2 – участки, в пределах которых по данным НСП зафиксированы крупные «висячие» тела рыхлых отложений, представляющие особую опасность с точки зрения возможной генерации цунами; 3 – крупные активные подводные каньоны.

Охотоморского склона о. Уруп и пролива Фриза.

Бухта Броутона

Массив Черных Братьев.

Благодарим за внимание!

ГАРУН ТАЗИЕВ (1914-1998)

Знаменитый вулканолог и создатель многочисленных популярных книг и документальных фильмов родился 11 мая 1914 г. в Варшаве, которая тогда, как и вся Польша, находилась под юрисдикцией Российской Империи.

