СТРОЕНИЕ ВЕРХНЕЙ ЧАСТИ ГЕОЛОГИЧЕСКИХ РАЗРЕЗОВ В ПУНКТАХ МОНИТОРИНГА ПОДПОЧВЕННОГО РАДОНА НА ПЕТРОПАВЛОВСК-КАМЧАТСКОМ ГЕОДИНАМИЧЕСКОМ ПОЛИГОНЕ

Акбашев Р.Р., Макаров Е.О., Фирстов П.П.

Камчатский филиал ФИЦ ЕГС РАН, г. Петропавловск-Камчатский, <u>arr@emsd.ru</u>

Введение

На Петропавловск-Камчатском геодинамическом полигоне начиная с 1998 г. работает сеть пунктов регистрации объемной активности радона (OA Rn) в почвенном воздухе рыхлых отложений. В работах [2,3] показано, что перед 67% землетрясений с магнитудами M > 5.5, произошедшими в Авачинском заливе, в поле подпочвенного Rn наблюдались предвестники со временем упреждения 1-8 суток. Пункты сети радонового мониторинга расположены в разных структурных элементах побережья Авачинского залива, что дает основание предполагать различный отклик в динамике OA Rn в связи с разной реакцией отдельных блоков района на геодеформационные процессы, связанные с подготовкой сильных землетрясений.

Перенос Rn в системе «грунт-атмосфера» в зоне аэрации осуществляется с помощью двух основных процессов – молекулярной диффузии и адвекции. Первый процесс – распространение в поровом пространстве грунта молекул газа, уравнивает концентрацию Rn во всех частях объема породы. Второй процесс характеризуется вертикальным перемещением молекул газа по порам в результате теплообмена (конвекции), вариаций давления (фильтрации), а также всплытия микропузырей в зоне полного влагонасыщения. Отсюда видно, что на процесс миграции Rn в рыхлых отложениях сильно влияет проницаемость грунта, зависящая от его свойств и строения, наличия водоносных горизонтов и изменений напряженно-деформированного состояния геосреды.

Описание пунктов сети

Опорный пункт «Паратунка» ПРТ располагается на речной террасе ручья Коркина, который трассирует субширотный разлом в пределах Паратунского грабена. К Паратунскому грабену приурочена одноименная геотермальная система. На расстоянии около 700 м от пункта ПРТ ниже по течению ручья находятся естественные выходы термальных вод с содержанием растворенного Rn до 1.5 кБк/м³.

Пункт ПРТ2 расположен на базе геотермального стационара Института Вулканологии и Сейсмологии ДВО РАН. В пункте установлен автоматизированный комплекс регистрации концентрации почвенных газов, а регистрация концентрации Rn осуществляется на двух глубинах зоны аэрации [2]. Кроме того, на высотах 2.5 и 5 м осуществляется регистрация β и γ – излучений.

Пункт КРМ расположен в пойме реки Карымшина притока реки Паратунка. Датчики Rn располагаются в шпурах элювиально-делювиальных отложений на двух глубинах зоны аэрации (один и 1.3 м).

Пункт ИНС расположен вблизи здания Института вулканологии и сейсмологии ДВО РАН в пределах Петропавловского горста. Он создан на основе скважины глубиной 350 м и состоит из бункера, заглубленного на 2.5 м над оголовком скважины, над которым установлен металлический контейнер.

Аппаратура и методика работ

Для исследования строения верхней части геологического разреза в районе пунктов радонового мониторинга использовалась цифровая инженерная сейсморазведочная станция «ЭЛЛИСС-3».

Блок «ЭЛЛИСС-3» обеспечивает получение данных с 24–48 сейсмических каналов и их предварительную обработку. Отображение результатов и дополнительная обработка данных в полевых условиях производится с помощью ноутбука с прикладным программным обеспечением.

Сейсморазведочные работы проводились в модификации сейсмозондирования методом преломленных волн (МПВ), по системе точечного зондирования с получением пар встречных и расходящихся годографов. Длина расстановки сейсмического зонда составляла 46–92 м, при шаге между сейсмоприемниками в 2.0 м. Источником сейсмического сигнала являлось ударное

воздействие по металлической подставке кувалдой весом 8 кг. По результатам работ построены скоростные разрезы Р и S волн геологической среды.

Скоростные разрезы сейсмозондирования методом МПВ строились с помощью прикладного пакета программ «RadExPro» (<u>www.radexpro.ru</u>) по общепринятой методике, способом пластовых скоростей. В результате интерпретации были получены значения скоростей распространения продольных волн (V_p) и поперечных волн (V_s), выделены соответствующие им границы и определена их мощность H.

По данным сейсморазведки на основе работы [1] рассчитывались основные физиколитологические параметры грунтов: влажность (W, %), плотность (ρ , г/см³), пористость (η , %).

Строение верхней части геологического разреза в пунктах радонового мониторинга

В четырех наиболее оснащенных пунктах радонового мониторинга в 2013-2016 гг. были выполнены сейсморазведочные работы, для оценки физико-литологических свойств грунтов верхней части геологического разреза с целью построения математических моделей миграции Rn к дневной поверхности.

<u>ПРТ.</u> В районе опорного пункта радонового мониторинга было выполнено два сейсмических профиля (СП). Далее будет рассмотрен ближайший к пункту регистрации профиль – СП1. Сейсмический разрез СП1 приведен на рис. 1 а,б, а скорости сейсмических волн и мощности слоев в табл. 1, где также приведены расчетные значения физических свойств грунтов.

На СП1 по скоростным границам выделяются три слоя:

1) почвенно-пирокластический чехол мощностью h=(1.8-2.7) м, Vs=(127-207) м/с, Vp=(228-366) м/с;

2) песчано-глинистые отложения аллювиального происхождения h=(1.6-9.5) м, с Vs=(372-446) м/с и Vp=(624-694) м/с;

3) подложкой для второго слоя является крупнообломочный материал с песчаным заполнителем аллювиально-флювиогляциального происхождение fQII-III, с Vs=(464-505) м/с и Vp=(1157-1441) м/с.

Уровень грунтовых вод (УГВ) по данным сейсморазведки определен на 6 м (рис. 1).

<u>ПРТ2.</u> В районе пункта выполнен один сейсмический профиль (СП). Выделены три сейсмогеологических элемента (рис. 2) (табл.2):

1) почвенно-пирокластический чехол h=(1.6-1.7) м, с Vs=(86-108) м/с и Vp=(233-211) м/с;

2) суглинки, песчано-глинистый грунт h=(2.2-2.4) м, с Vs=(308-314) м/с и Vp=(532-592) м/с;

3) подложкой для второго слоя является крупнообломочный материал с песчаным заполнителем ледникового происхождения с Vs=(436-447) м/с и Vp=(701-763) м/с;

По данным сейсморазведки УГВ выделяется на глубине 15 м.

КРМ. В районе пункта выполнен один сейсмический профиль (СП).

Выделены два сейсмогеологических элемента (рис. 3) (табл. 3):

1) почвенно-растительный слой мощностью h=(2.8-3.2) м, с Vs=(162-216) м/с и Vp=(273-306) м/с;

2) подложкой для первого слоя является галечниковый грунт с песчаным заполнителем до 25-30%, ледникового происхождения с Vs=(309-337) м/с и Vp=(1706-2081) м/с.

По данным сейсморазведки УГВ располагается на 2.8 м от поверхности.

<u>ИНС.</u> В районе пункта выполнены два сейсмических профиля (СП1,2), расположенные ортогонально друг к другу. Далее будет рассмотрен профиль – СП1.

На СП1 по скоростным границам выделяются два слоя (рис. 4) (табл.4):

1) почвенно-пирокластический чехол h=(1-3.3) м, с Vs=(106-172) м/с и Vp=(190-224) м/с;

2) переотложенные обвально-взрывные отложения, их мощность может составлять до 20-23

м, с диапазоном скоростей поперечных волн V_s =375-428 м/с и продольных волн V_p =465-591 м/с.

По скоростям продольных волн определена глубина УГВ, h=7-8 м.

Рис. 1. Скоростные разрезы S (а) и P (б) – волн в районе пункта ПРТ (СП1).

Таблица 1. Расчетные значения физико-литологических параметров грунтов по СП1 в пункте ПРТ

СП/ПП (м)	мощность слоя (м)	V _{pi} , (м/с)	V _{si} , (м/с)	V_s/V_p	W, %	<i>ρ</i> , г/см ³	η, %
	2.7	350	201	0.57	26.98	1.71	53.11
1/0	4.1	694	446	0.64	16.14	1.93	50.50
	3.2	1393	505	0.36	УГВ	2.15	39.89
	2.8	323	169	0.52	27.83	1.68	53.24
6/10	3.7	684	406	0.59	16.45	1.92	50.60
	3.5	1419	507	0.36	УГВ	2.16	39.36
	1.8	228	127	0.56	30.82	1.61	53.62
12/22	4.5	648	372	0.57	17.59	1.89	50.95
	3.7	1441	477	0.33	УГВ	2.16	38.90
	2.2	314	207	0.66	28.11	1.69	53.28
18/34	6.3	624	379	0.61	18.34	1.89	51.17
	1.5	1157	464	0.40	УГВ	2.08	44.27
	2.3	366	281	0.77	26.47	1.74	53.03
24/46	1.6	625	393	0.63	18.31	1.89	51.16
1	61	1201	482	0.40	VΓB	2 10	43 51

Рис. 2. Скоростные разрезы S (а) и P (б) – волн в районе пункта ПРТ2.

Таблица 2. Расчетные значения физик	-литологических параметров	з грунтов по СП в	пункте ПРТ2.
-------------------------------------	----------------------------	-------------------	--------------

СП/ПП (м)	мощность слоя (м)	V _{pi} , (м/с)	V _{si} , (м/с)	V_s/V_p	W, %	<i>ρ</i> , г/см ³	η, %
46/0	1.6	211	102	0.48	26.62	1.80	47.70
	2.4	590	310	0.53	18.93	2.00	42.32
	6	748	440	0.59	14.12	2.05	40.08
46/10	1.7	213	108	0.51	26.04	1.79	47.68
	2.2	592	308	0.52	19.05	2.00	42.29
	6.1	755	436	0.58	14.34	2.06	39.98

Продолжение	габлицы 2.						
46/22	1.7	218	96	0.44	27.49	1.83	47.60
	2.3	570	312	0.55	18.63	1.97	42.61
	6	763	447	0.59	13.92	2.06	39.87
46/34	1.7	229	101	0.44	27.30	1.83	47.45
	2.3	536	314	0.59	18.14	1.93	43.09
	6	730	443	0.61	13.86	2.03	40.33
	1.6	233	86	0.37	28.91	1.87	47.39
46/46	2.4	532	313	0.59	18.14	1.93	43.15
	6	701	423	0.60	14 51	2.01	40.75

Рис. 3. Скоростные разрезы S (а) и P (б) – волн в районе пункта КРМ.

Таблица 3. 1	Расчетные	значения ф	оизико-	-литологи	ических	параметр	ов гру	нтов пс	о СП в	в пункте	KPN	1.
			_								_	

СП/ПП (м)	мощность слоя (м)	V _{pi} , (м/с)	V _{si} , (м/с)	V_s/V_p	W, %	<i>ρ</i> , г/см ³	η, %
1/0	1.6	306	175	0.57	28.36	1.86	53.32
170	8.4	1927	329	0.17	УГВ	2.22	40.55
	1.7	284	163	0.57	29.05	1.85	53.41
6/10	8.3	1938	333	0.17	УГВ	2.23	38.93
12/22	1.7	294	162	0.55	28.74	1.86	53.37
12/22	8.3	2081	336	0.16	УГВ	2.26	38.73
18/3/	1.7	302	176	0.58	28.49	1.86	53.34
10/54	8.3	1998	324	0.16	УГВ	2.24	39.52
24/46	1.6	273	180	0.66	29.40	1.85	53.46
24/40	8.4	1708	337	0.20	УГВ	2.18	38.67

Рис. 4. Скоростные разрезы S (а) и P (б) – волн в районе пункта ИНС.

СП/ПП (м)	мощность слоя (м)	V _{pi} , (м/с)	V _{si} , (м/с)	V_s/V_p	W, %	<i>ρ</i> , г/см ³	η, %
1/0	3	211	150	0.71	31.35	1.59	53.68
1/0	22	575	332	0.58	19.88	1.90	51.59
12/22	2.7	192	117	0.61	31.95	1.57	53.73
12/22	22.3	519	376	0.72	21.65	1.87	52.04
24/46	1.5	200	107	0.54	31.70	1.58	53.71
	23.5	465	315	0.68	23.35	1.83	52.43
36/70	1.3	194	145	0.75	31.89	1.58	53.73
30/70	23.7	459	362	0.79	23.54	1.83	52.47
48/04	1	190	117	0.62	32.02	1.57	53.74
40/94	24	482	335	0.70	22.82	1.84	52.31

Таблица 4. Расчетные значения физико-литологических параметров грунтов по СП1 в пункте ИНС.

Используя представления о строении верхней толщи в пунктах мониторинга по данным сейсморазведочных работ и подходу к миграции Rn как потоку геогаза, в дальнейшем планируется провести математическое моделирование и сопоставить модельные расчеты с экспериментальными данными. Определенная часть модельных расчетов выполнена в работе [5] и апробирована на данных радонового мониторинга на Петропавловск-Камчатском геодинамическом полигоне. Для модельных расчетов строение верхней толщи определяется по данным сейсморазведочных работ. В слоях рыхлых отложений (исследуемая толща до 30 м) миграция Rn осуществляется за счет адвекции и диффузии. Для них применима классическая модель миграции за счет диффузии (D) и адвективного вертикального потока (скорость v). Причем v определяется физико-литологическими свойствами грунтов: плотностью (ρ), пористостью (η), влажностью (W), газовой проницаемостью (k). температуропроводностью (χ).

Заключение

Каждый пункт регистрации имеется свои особенности строения элювиально-делювиальных отложений, в зоне аэрации которых, как правило, размещены газоразрядные счетчики - датчики β – излучения Rn и его короткоживущих радионуклидов. В данной работе проведены результаты изучения строения верхней части геологического разреза в пунктах радонового мониторинга. Изучение геологического строения на пунктах регистрации позволит детализировать процессы миграции Rn к поверхности и, соответственно, лучше понять особенности формирования возмущений в поле подпочвенного Rn, предваряющих землетрясения.

Работа выполнена при финансовой поддержке гранта РФФИ № 16-05-00162.

Список литературы

1. Аникин О.П.: Горшенин Ю.В. Методические рекомендации по определению состава. состояния и свойств грунтов сейсмоакустическими методами // М.: НИИ тран-го ст-ва. 1985. 37 с.

2. Макаров Е.О.. Фирстов П.П.. Волошин В.Н. Аппаратурный комплекс для регистрации концентрации подпочвенных газов с целью поиска предвестниковых аномалий сильных землетрясений Южной Камчатки // Сейсмические приборы. 2012. Т. 48. № 1. С. 5-14.

3. Фирстов П.П. Мониторинг объемной активности подпочвенного радона (²²²Rn) на Паратунской геотермальной системе в 1997-1998 гг. с целью прогноза предвестников сильных землетрясений Камчатки // Вулканология и сейсмология. 1999. № 6. С.33-43.

4. Фирстов П.П. Макаров Е.О. Акбашев Р.Р. Мониторинг концентрации почвенных газов на Петропавловск-Камчатском геодинамическом полигоне в связи с прогнозом сильных землетрясений // Сейсмические приборы. 2015. Т. 51. № 1. с.60-80.

5. *Паровик Р.И.*. *Фирстов П.П*. Апробация новой методики расчета плотности потока радона с поверхности (на примере Петропавловск-Камчатского геодинамического полигона) // АНРИ. 2008. № 3. С.52-57.