МЕТОДИЧЕСКИЕ АСПЕКТЫ ПРЕЦИЗИОННОГО ГИДРОГЕОЛОГИЧЕСКОГО МОНИТОРИНГА ПЛАТФОРМЕННЫХ ТЕРРИТОРИЙ (НА ПРИМЕРЕ ГЕОФИЗИЧЕСКОЙ ОБСЕРВАТОРИИ ИДГ РАН «МИХНЕВО»)

Горбунова Э.М., Беседина А.Н., Виноградов Е.А., Кабыченко Н.В., Свинцов И.С.

Федеральное государственное бюджетное учреждение науки Институт динамики геосфер Российской академии наук, г. Москва, emgorbunova@bk.ru

Введение

Подземные воды относятся к одному из наиболее ценных полезных ископаемых, которые повсеместно используются лля питьевого, хозяйственно-бытового И технологического водоснабжения. Одновременно с этим водоносные горизонты находятся в зоне влияния многоуровенной техногенной нагрузки, связанной с использованием и освоением подземного условий пространства. Изменение гидрогеологических предопределяет вид и степень интенсификации опасных природно-техногенных процессов, таких как карст, суффозия, просадки, влияющих на состояние несущих свойств грунтов. Поэтому в пределах градопромышленных агломераций, на участках разработки месторождений различного типа возрастает актуальность и необходимость организации и проведения высокоточного мониторинга режима подземных вод.

Прецизионные гидрогеологические наблюдения наиболее широко распространены в сейсмоактивных регионах мира [3, 8, 12, 18, 19, 21]. Совместный анализ сейсмических и гидрогеологических данных используется для оценки коллекторских свойств флюидонасыщенных массивов [16], изменений фильтрационных параметров, связанных с прохождением сейсмических волн [15] и техногенным воздействием [14], с целью разработки и апробации методики поиска предвестников землетрясений [7, 9].

В асейсмичных регионах высокоточный мониторинг режима подземных вод проводится на отдельных объектах в ограниченном объеме, преимущественно для решения научно-методических задач. На основе первых прецизионных синхронных измерений уровня и атмосферного давления с интервалом дискретизации 1 час в скважине «Обнинск» в 1986-1987 гг. были рассчитаны коэффициенты барометрической и приливной эффективности системы «пласт-скважина» и основные параметры приливных волн, выделенные в полученных гидрогеологических данных [2]. По результатам мониторинга уровня подземных вод с 1991 г. по 1994 г. в скважинах, расположенных в пос. Зеленый Ногинского района Московской области и на северо-западе Москвы, разработана методика выделения информативных интервалов вариаций уровня подземных вод, соответствующих теоретически рассчитанным приливным объемным деформациям грунта [11].

В 2005-2007 гг. автоматизированные системы измерений уровня и температуры использовались при эксплуатации месторождения подземных вод «Пионерное»в п. Новозаполярный, на инфильтрационном водозаборе Лазаревское в районе г. Сочи, на полигоне «Лужки» в Московской области и участке «Зеленые острова» в Саратовской области [6]. В настоящее время в рамках единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций в России мониторинг подземных вод выполняется наряду с изучением опасных экзогенных и эндогенных геологических процессов [10].

На территории геофизической обсерватории ИДГ РАН «Михнево» (ГФО «Михнево») прецизионные наблюдения за режимом разновозрастных водоносных горизонтов входят в состав комплексного мониторинга геофизических полей [1]. Ряд стационарных факторов (таких как вариации атмосферного давления, земные приливы) и эпизодических (прохождение волн от телесейсмических землетрясений, техногенная помеха), которые оказывают существенное влияние на состояние системы "водоносный горизонт-скважина" в различном диапазоне частот, рассматриваются в качестве зондирующих сигналов для дистанционной оценки проницаемости флюидонасыщенного коллектора трещинно-порового типа.

Краткая характеристика гидрогеологических условий территории исследований

Геофизическая обсерватория ИДГ РАН «Михнево» (ГФО «Михнево») расположена на расстоянии 80 км южнее г. Москвы на северо-восточной окраине Приокско-террасного природного биосферного заповедника вне зоны активного техногенного влияния. В гидрогеологическом

отношении рассматриваемая территория приурочена к юго-западной части Московской синеклизы Восточно-Европейской платформы и представляет собой многослойную терригенно-карбонатную систему разновозрастных водоносных горизонтов и комплексов, разделенных водоупорами.

Прецизионный мониторинг уровня подземных вод проводится в двух наблюдательных скважинах, вскрывающих безнапорный и напорный водоносные горизонты в интервалах 42,9-56,2 и 92-115 м соответственно. Скважины оборудованы прецизионными датчиками уровня LMH308i (производство Германия) с точностью измерения 1,7 мм и частотой опроса 1 Гц.

Водовмещающие породы представлены известняками неравномерно трещиноватыми с подчиненными прослоями доломитов, глин. Наличие регионального водоупора – верейских глин среднего карбона предопределяет разобщенность уровней верхнего горизонта, прослеженных в интервале 42,9-46,4 м и нижнего, устанавливающегося на глубине 66,7-69,8 м за период наблюдений 2014-2016 гг. (рис.1).

Рис. 1. Вариации уровня каширского водоносного горизонта среднего карбона и алексинско-протвинского водоносного комплекса нижнего карбона за период наблюдений 2014-2016 гг.

Режим верхнего безнапорного водоносного горизонта техногенно-нарушенный из-за повсеместной эксплуатации подземных вод скважинами, колодцами и характеризуется региональным трендом снижения уровенной поверхности. Режим нижезалегающего напорного водоносного горизонта естественный. Амплитуды сезонных вариаций в паводковый период достигают 3 м.

Влияние атмосферного давления наиболее отчетливо выражено в вариациях уровня безнапорного водоносного горизонта по сравнению с напорным в диапазоне приливных волн (рис. 2). В амплитудном спектре нижнего горизонта прослежены суточные и полусуточные приливные волны, которые в верхнем горизонте сопоставимы с уровнем шума.

Рис. 2. Функция когерентности между уровнем безнапорного (серая линия) и напорного (черная линия) водоносных горизонтов. Пунктиром выделены периоды основных типов приливных волн

По результатам гидрогеологического опробования водопроводимость верхнего горизонта составляет 15 м²/сут, нижезалегающего - не превышает 4 м²/сут. По данным бурения и геофизических исследований в скважинах выделены зоны повышенной кавернозности и трещиноватости пород в интервалах 43-46 м, 50-54 м и 92-94 м, 99-100 м соответственно.

Основные результаты исследований

Рассматриваемые водоносные горизонты на территории ГФО «Михнево» различаются не только по фильтрационным свойствам и величине напора, но и по наличию или отсутствию гидрогеологических откликов на одни и те же стационарные и эпизодические факторы.

Уровень верхнего безнапорного водоносного горизонта осложнен техногенной помехой, связанной с периодическим формированием мини депрессионных воронок (рис. 3) из-за водоотбора каждые 5-7 суток из технической скважины, удаленной на расстояние 300 м.

Рис. 3. Уровень безнапорного водоносного горизонта, очищенный от влияния атмосферного давления (черная линия), и давления (серая линия) (в квадратной врезке показана одна из мини-депрессионных воронок)

Гидрогеологический отклик на подобное эпизодическое нарушение в наблюдательной скважине использован для оценки водопроводимости по данным восстановления уровня по стандартной методике [4]. Особенности формирования мини депрессионных воронок был проанализированы при частичном уменьшении мощности безнапорного водоносного горизонта на 3,6 м. Подобных исследований по рассмотрению техногенной помехи, связанной с влиянием удаленных откачек на уровень подземных вод, в качестве зондирующего сигнала при оценке фильтрационных свойств коллектора в разрезе скважины ранее не проводилось.

Обработка полученных высокоточных данных периодического зондирования коллектора на фоне устойчивого тренда снижение уровня позволила определить вертикальную анизотропию пласта. Полученные средние значения изменения проницаемости трещинно-порового коллектора по глубине в интервале 42,7-46,4 м составили 2,6-3,3 мД и не противоречат результатам лабораторных определений, полученных на образцах керна, отобранных при бурении из скважины.

В нижезалегающем напорном водоносном горизонте в составе выделенных приливных волн наиболее представительной и значимой является полусуточная волна лунного типа M₂, которая может рассматриваться в качестве зондирующего сигнала для оценки фильтрационных свойств горизонта [5]. Значимые сезонные вариации уровня нижнего напорного водоносного горизонта осложняют анализ проницаемости коллектора по фазовому сдвигу между приливной волной M₂, выделенной в уровне и смещении грунта (рис. 4) [20].

Представительность данных была существенно улучшена при рассмотрении интервалов квазистационарной фильтрации и исключении участков среднесуточных вариаций уровня более 5 см/сут. В рамках поро-упругой модели среды фоновые вариации проницаемости карбонатного коллектора с двойной пористостью изменяются от 0,08 до 1,5 мД.

На территории ГФО «Михнево» в напорном и безнапорном водоносных горизонтах зарегистрированы вариации уровня, вызванные прохождением сейсмических волн от землетрясений, произошедших на расстояниях 2000-16000 км (рис. 5а). Совместная обработка сейсмических записей, полученных малоапертурной группой «Михнево» (международный код MHVAR), и гидрогеологических данных позволяет оценить отклик водоносных горизонтов на землетрясения: типы волн и их параметры – период и амплитуду сигнала. Как для напорного, так и для безнапорного горизонтов отмечена высокая корреляция отклика со скоростью смещения грунта (рис. 56-г).

Реакция подземных вод на одно и то же землетрясение может отличаться в пределах точности измерений. В частности, при землетрясении в Чили 16.09.2015 г. в верхнем безнапорном водоносном горизонте, прослежены вариации уровня, вызванные цугом поперечной и поверхностных волн, тогда как в нижнем напорном горизонте динамические изменения уровня обусловлены только поверхностными волнами (рис. 5а) [13].

Рис. 4. Фазовый сдвиг между смещением грунта и уровнем напорного водоносного горизонта (а) и зависимость между водопроводимостью и фазовым сдвигом (б) (черные кружки - исходные значения, рассчитанные по эллипсам [5], красные кружки - значения, рассчитанные в окне 28 дней) (черная линия - теоретическая кривая [17], большая область - все значения, средняя - после исключения областей с повышенной скоростью подземного потока, малая - после откачки)

Рис. 5. Сейсмограмма Чилийского землетрясения 16.09.2015 Ms=8.3 и диаграммы изменения уровня воды (а), спектры скорости смещения грунта (б), уровня напорного (в) и безнапорного (г) водоносных горизонтов (а - сверху вниз: скорость смещения грунта, мм/с по горизонтальной компоненте (восточной) - GVE. Уровень безнапорного (WLC) и напорного (WLU) водоносных горизонтов. За начало отсчета по оси абсцисс принят момент прихода сейсмической волны на станцию MHVAR) (черная линия - шум, зарегистрированный в течение 3 часов до момента прихода РКіКР волны, серая линия - данные, зарегистрированные в течение 3 часов с момента прихода РКіКР волны)

На основе сравнительного анализа гидрогеологических откликов определен диапазон значений скорости смещения грунта, при которых зарегистрированы вариации уровня напорного и безнапорного водоносных горизонтов на прохождение сейсмических волн от катастрофических землетрясений в платформенных условиях. Установлено, что гидрогеологический отклик на поверхностные волны от землетрясений имеет пороговый характер, зависит от частоты и различается для напорного и безнапорного водоносных горизонтов (рис. 5в, г).

Заключение

За период наблюдений с 2008 г. по 2017 г. накоплен определенный объем материала по исследованию вариаций уровня подземных вод, обусловленных изменением состояния массива под влиянием естественных факторов – земными приливами, прохождением сейсмических волн от удаленных землетрясений и связанных с техногенной помехой. В верхнем безнапорном водоносном горизонте наиболее отчетливо выражен гидрогеологический отклик на землетрясения и удаленные откачки. Вариации уровня нижезалегающего водоносного горизонта обусловлены земными приливами и катастрофическими землетрясениями.

Полученные результаты диагностики состояния карбонатного трещинно-порового коллектора подтверждают высокую эффективность прецизионного мониторинга и являются информативными

при проектировании и эксплуатации пластов в режиме реального времени. Амплитудно-частотные параметры гидрогеологических откликов безнапорного и напорного водоносных горизонтов на удаленные землетрясения превышают фоновые вариации уровней подземных вод и рекомендуется учитывать при строительстве объектов повышенного уровня ответственности в сложных инженерногеологических условиях из-за возможной активизации природно-техногенных процессов.

Работа выполнена при финансовой поддержке Российской академии наук (проект № 0146 - 2015-0012).

Список литературы

1. Адушкин В.В., Овчинников В.М., Санина И.А., Резниченко О.Ю. "Михнево": от сейсмостанции № 1 до современной геофизической обсерватории // Физика Земли. 2016. №1. С.108-119.

2. Багмет А.Л., Багмет М.И., Барабанов В.Л., Гриневский А.О., Киссин И.Г., Малугин В.А., Рукавишникова Т.А., Савин И.В. Исследование земноприливных колебаний уровня подземных вод на скважине "Обнинск" // Физика Земли. 1989. № 11. С.84-95.

3. Волейшо В.О., Куликов Г.В., Круподерова О.Е. Геодинамический режим Камчатско-Курильского и Сахалинского сейсмоактивного региона по данным ГГД-мониторинга // Разведка и охрана недр. 2007. №5. С.20-24.

4. Горбунова Э.М., Беседина А.Н., Виноградов Е.А., Свинцов И.С. Оценка проницаемости трещиннопорового коллектора при эпизодическом техногенном воздействии // Динамические процессы в геосферах. Вып.8. Сб. научных трудов ИДГ РАН. М.: ГЕОС. 2016. С.42-51.

5. *Кабыченко Н.В.* Оценка фазового сдвига между приливной деформацией и вариациями уровня воды в скважине // Локальные и глобальные проявления воздействий на геосферы. Сб.науч.трудов ИДГ РАН. М.: ГЕОС. 2008. С.62-712.

6. *Каплан А.Ю., Пашнин А.Ю*. Анализ результатов использования автоматизированных средств измерений при ведении мониторинга подземных вод // Разведка и охрана недр. 2007 №7. С.35-38.

7. Копылова Г.Н., Болдина С.В., Смирнов А.А., Чубарова Е.Г. Опыт регистрации вариаций уровня и физико-химических параметров подземных вод в пьезометрических скважинах, вызванных сильными землетрясениями (на примере Камчатки) // Сейсмические приборы. 2016. Т.52. №4. С.61-74.

8. Копылова Г.Н., Куликов Г.В., Тимофеев В.М. Оценка состояния и перспективы развития гидрогеодеформационного мониторинга сейсмоактивных регионов России // Разведка и охрана недр. 2007. №11. С.75-83.

9. Куликов Г.В., Рыжов А.А. Прогноз землетрясений по данным мониторинга

гидрогеодеформационного поля // Геодинамика и тектонофизика. 2011. Т.2. Вып.2. С.194-207.

10. Лыгин А.М., Стажило-Алексеев С.К., Кадурин И.Н., Сибгатулин В.Г., Кабанов А.А. Мониторинг напряженно-деформированного состояния геологической среды в Сибирском и Дальневосточном федеральных округах в 2007-2014 гг. Красноярск, 2015. 114 с.

11. *Любушин А.А. (мл.), Малугин В.А. Казанцева О.С.* Мониторинг приливных вариаций уровня подземных вод в группе водоносных горизонтов // Физика Земли. 1997. № 4. С.52-64.

12. Сейсмологические и геофизические исследования на Камчатке. К 50-летию детальных сейсмологических наблюдений / Ред. Е.И. Гордеев, В.Н. Чебров. Петропавловск-Камчатский: Холд. Комп. «Новая книга», 2012. 480 с.

13. *Besedina A., Vinogradov E., Gorbunova E., Svintsov I.* Chilen Earthquakes^A Aquifer Responses at the Russian Platform // Pure and Applied Geophysics. Vol.173. N2. PP.321-730. 2016. ISSN 0033-4553.

14. *Burbey T.J., Zhang M.* Assessing hydrofracing success from Earth tide and barometric response // Ground water. 2010. V.48. N.6. P.825-835.

15. *Doan M.L., Brodsky E.E., Priour R., Signer C.* Tydal analysis of borehole pressure - A tutorial. Schlumberger Research report, 2006. 61 p.

16. *Elkhoury J.E., Brodsky E.E., Agnew D.C.* Seismic waves increase permeability // Letters. 2006. V. 441. P. 1135-1138. (Supplementary Material for Nature manuscript 2005-11-13339 Seismic Waves Increase Permeability). doi:10.1038/nature04798

17. *Hsieh P.A., Bredehoeft J.D., Farr J.M.* Determination of aquifer transmissivity from Earth tide analysis // Water Resources Research. 1987. V. 23. N. 10. P. 1824-1832.

18. *Kitagawa Y., Itaba S., Matsumoto N., Koizumi N.* Frequency characteristics of the response of water pressure in a closed well to volumetric strain in the high frequency domain // Journal of Geophysical research. 2011. V.116. B08301. P.1-12. doi:10.1029/2010JB007794

19. *Liu C., Huang M.-W., Tsai Y.-B.* Water Level Fluctuations Induced by Ground Motions of Local and Teleseismic Earthquakes at Two Wells in Hualien, Eastern Taiwan // TAO. 2006. V.17. N.2. P.371-389.

20. Vinogradov E., Gorbunova E., Besedina A., Kabychenko N. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime // Pure and Applied Geophysics. Vol.174. N6. 2017. ISSN 0033-4553. DOI 10.1007/s00024-017-1585-z.

21. Wang C.-Y., Manga M. Earthquakes and Water. Berlin. Springer. 2010, 225 p.