УДК 550.380.87

ТРЕХКОМПОНЕНТНЫЙ ИНДУКЦИОННЫЙ МАГНИТОМЕТР (КОНСТРУКЦИЯ, ОБСЛУЖИВАНИЕ, КАЛИБРОВКА)

Щекотов А.Ю.¹, Беляев Г.Г.², Кобзев В.А.³

¹Институт физики Земли им. О.Ю. Шмидта РАН, г. Москва, oldresident@yandex.ru ²Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН, г. Москва, Троицк, belyaev@izmiran.ru ³Камчатский филиал ФИЦ «Единая геофизическая служба РАН», г. Петропавловск-Камчатский, geofizik@emsd.ru

Описание магнитометра

Трех-компонентный индукционный магнитометр был разработан и изготовлен в ИЗМИРАН и установлен на создаваемой обсерватории Карымшина в 1999 г. в рамках проекта МНТЦ. Задачей проекта МНТЦ были комплексные исследования явлений, связанных с сейсмичностью, поиск и изучение предвестников землетрясений и анализ возможности их применения для сейсмического прогноза. Датчики магнитометра представлены на рис. 1. Процесс установки датчика для регистрации Z-компоненты магнитного поля показан на рис.2.

Рис.1 Датчики трех-компонентного индукционного магнитометра.

Рис. 2. Установка вертикального датчика магнитометра.

Магнитометр состоит их трех идентичных датчиков H, D и Z компонент магнитного поля и блока коммутации (БК) с разъемами для подключения датчиков, кабеля питания и сигнального кабеля, идущего на вход системы сбора данных. В блоке также находится стабилизатор питания датчиков с напряжениями +/-12 В. Блок-схема магнитометра показана на рис. 3.

Также на рис. 3 показаны функциональные схемы датчиков, которые включают в себя индукционную катушку (ИК), катушку обратной связи (КОС) и калибровочную катушку (КК). Все они расположены на многослойном стержне из аморфного железа с высокой магнитной проницаемостью.

Рис.3. Блок-схема магнитометра

Сигнал с ИК поступает на модулятор М1, который переносит спектр сигнал на частоты в окрестности 1 КГц. Далее, сигнал усиливается в У1 и поступает на модулятор М2, который возвращает сигнал на исходные частоты после пропускания через фильтр нижних частот ФНЧ. Модуляторы управляются общим генератором (Г). На выходе датчика находится усилитель с дифференциальным выходом (ДУ), с которого после БК сигнал поступает по витой паре на систему сбора.

Такую схему обычно называют МДМ усилителем. Она характеризуется равномерным шумом в широкой полосе частот, что обеспечивает высокую чувствительность датчиков на низких частотах (<10 Гц). Передача дифференциального сигнала с выхода датчиков по витой паре способствует высокой помехоустойчивости – низким внешним наводкам на длинный кабель. Цепь обратной связи стабилизирует функцию передачи датчиков, а цепь внутренней калибровки позволяет оценивать уровни регистрируемых сигналов, а также проверять работоспособность датчиков. Далее приведены их характеристики (таблица 1).

На рис. 4 показаны фаза и модуль функции преобразования датчиков, а также их чувствительность (уровень собственных шумов, приведенных к магнитному полю) в зависимости от частоты.

Внешняя калибровка включает в себя: генератор, токозадающий резистор R, соленоид (внутрь которого, примерно соосно, помещается исследуемый датчик) и анализатор спектра. Коэффициент преобразования калибровочной цепи зависит от плотности намотки соленоида и резистора R, а так же смещения датчика относительно оси соленоида и его краев. Схема внешней калибровки приведена на рис. 5.

Таблица	 Характе 	ристики	датчиков.
---------	-----------------------------	---------	-----------

1	Диапазон, Гц	0.0025-40
	Коэффициент преобразования G:	
2	на частотах <4 Гц, В/(нТ·Гц)	0.4
	на частотах >4 Гц, В/(нТ.Гц)	1.6
3	Температурный дрейф G, %/град	< 0.05
	Чувствительность Впор лучше, $nT/\sqrt{\Gamma \mu}$:	
	на частоте 0.01 Гц	20
4	на частоте 0.1 Гц	20
	на частоте 1.0 Гц	0.2
	на частоте >10 Гц	0.02
5	Асимметрия дифференциальных выходов датчика, ($U_{abx}=\pm 1$ B), %	<1
6	Смещение нуля на выходе датчика, мВ	<10 (20°)
7	Дрейф смещения, мВ/°С	<1
8	Коэффициент преобразования G _{cal} калибровочной цепи, нТ/В	1.25
9	Неидентичность ФЧХ датчиков на $F>4\Gamma$ ц, град	<2
10	Неидентичность коэффициентов преобразования G датчиков, дБ	<1
11	Выходное напряжение датчика, В ($R_{\mu a z} = 10$ K, $C_{\mu a z} = 10$ н Φ)	±10
12	Напряжения питания датчика, В	±(10-15)
13	Потребляемый ток, мА (<i>U_{num}=</i> ±12,6В)	<12
14	Вес датчика, кг	<6
15	Габариты датчика (диаметр-длина, мм)	60-720
16	Диапазон рабочих температур, °С	-30+50

Важен именно шаг – плотность намотки. Намотка должна быть равномерной. Длина трубы соленоида в нашем случае равна ~ 1.7 м, а длина участка с обмоткой – 1.5 м. Диаметр основы соленоида в нашем случае выбирается 30 см. Шаг намотки – 1 см. Диаметр провода для намотки не имеет особого значения, вполне достаточно – 0.5-2.0 мм. Сопротивление 12.4 кОм указано с учетом выходного сопротивления генератора и активного сопротивления соленоида.

выходного сопротивления генератора и активного сопротивления соленоида. Поле в соленоиде равняется: $H = I \times \frac{N}{L} [A/M]$. Здесь: $\frac{N}{L}$ – плотность намотки [витков/метр], I – ток в Амперах, N – кол-во витков, L – длина катушки в метрах.

Вычислим индукцию, поскольку она используется в оценке параметров датчика. Индукция $B = \mu_0 \times H$ [Тл], где: $\mu_0 = 4\pi \times 10^{-7} = 1.2566 \times 10^{-6}$, где μ_0 – магнитная постоянная, H – напряженность магнитного поля.

Рис. 4. Модуль функции преобразования и фаза (а) и чувствительность датчиков (б).

Ток в соленоиде равен отношению выходного напряжения генератора к сумме его выходного сопротивления, токозадающего резистора R и полного сопротивления соленоида. Полное сопротивление соленоида на низких частотах (<1 КГц) примерно равно его активному сопротивлению. Значение сопротивления R достаточно выбрать с точностью 1%.

Процедура внешней калибровки датчиков

Точность калибровки (оценки коэффициента преобразования датчика) зависит от соотношения сигнал/помеха, поэтому решающее значение имеет выбор места с минимальным уровнем помех. Как правило, это комната, где расположено минимальное количество электрических приборов. Далее, устанавливается и включается генератор и анализатор спектра, подключается тестер к выходу и затем, вращая соленоид с датчиком на столе, находим положение с минимальным уровнем сетевой помехи. После этого можно начинать калибровку.

Рис. 5. Схема внешней калибровки.

Выставляем на генераторе частоту в пределах 10-20 Гц и напряжение 0.1 В, измеряем с помощью анализатора спектра напряжение на выходе датчика. Оно должно быть ~ 1.6 В. Это следует из того, что калибровочная схема при таком напряжении создает поле в соленоиде 1 нТ, а коэффициент преобразования датчика на частотах 4-30 Гц равен 1.6 В/нТ.

Далее можно использовать внутреннюю калибровку датчиков, после ее проверки с помощью внешней калибровки.

Вариант калибровочной установки описан в [1].

Обслуживание магнитометра

В общем случае, магнитометр в обслуживании не нуждается. Однако нужно постоянно контролировать:

- напряжение внешнего источника напряжения должно быть в пределах 30-40 B;

- герметичность разъемов и целостность кабелей;

– сохранность крышки бокса с датчиками.

С учетом 20-летней эксплуатации датчиков, необходимо заменить в них электролитические конденсаторы.

Заключение

Успех низкочастотных электромагнитных измерений зависит, в основном, от уровня помех в точке измерения. Поэтому, помимо обеспечения вышеперечисленных требований, важное значение имеет выбор места установки магнитометра.

Список литературы

1. Pulz E. A. Calibration facility for search coil magnetometers // Meas. Sci. Technol. 2002. № 13. P. 49–51.