РОЛЬ ПЛАНЕТ И ПЛАНЕТНЫХ ГРУПП В АКТИВНОСТИ СОЛНЦА

Пономарева **О.В.**^{1, 2}

¹Камчатский государственный университет имени В. Беринга, Петропавловск-Камчатский ²Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский ponomareva ov@list.ru

Введение

Известно, что Солнце находится под воздействием гравитационного поля планет, и значительное влияние на солнечную активность оказывает Юпитер. Поэтому принято считать, что за солнечную активность со средним периодом 11 лет «ответственен» именно Юпитер.

Однако на солнечную активность оказывают влияние и планеты земной группы (ПЗГ), но их влияние исследователями почти не рассматривается. Влияние же этой планетной группы на активность Солнца существенно и отличается от влияния планет-гигантов (ПГ).

В исследовании доказывается, что Юпитер с сидерическим периодом T = 11,8567 лет, в составе планет-гигантов и Плутона (планеты с большим периодом обращения), отвечает за т.н. «долгопериодную» активность Солнца. За активность со средним периодом T = 11,083 лет, или т.н. «короткопериодную» активность, ответственны планеты именно земной группы.

Цель исследования - выделить в активности Солнца две составляющие: W-активность (число пятен) — активность, обусловленная статическими приливами на Солнце под воздействием гравитационного поля планет; и B-активность — активность, обусловленная движением Солнца относительно барицентра Солнечной системы (СС), т. н. барицентрическая активность.

Методика исследования и результаты

В настоящее время при исследовании солнечной активности применяют статистические методы, в частности Фурье-анализ. На наш взгляд, применение этого метода при исследовании активности Солнца не совсем корректно, так как к настоящему времени известны только 23 цикла солнечной активности (всего лишь 23 периодических колебания), и Фурье-анализ не позволит выделить доминанты в активности Солнца, которые можно было бы соотнести с теми или иными физическими процессами, «несущими ответственность» за существование тех или иных гармоник в активности Солнца.

Составлены уравнения движения планет, в основу которых положены законы Кеплера, так как рассматриваемые временные рамки простираются не более чем на 300 лет. Траектории планет для целей исследования были представлены в виде геометрических функций (см. рис. 1 - 7). Физические и орбитальные данные планет СС взяты из [2, 3].

Принятая система координат: гелиоцентрическая, стационарная (предполагается, что центр СС и центр тяжести Солнца совпадают и в пространстве неподвижны); барицентрическая, экваториальная (т.е. эклиптики планет и экватор Солнца лежат в одной плоскости).

Принятые допущения: планеты являют собой материальные точки; гравитационное поле СС рассмотрено как поле планет и Солнца. Не учитываются: взаимное влияние планет и их спутников; барицентрические формы движения планет с «развитыми» спутниковыми системами; гравитационное влияние объектов Пояса Астероидов и удаленных объектов СС.

Известно, что под воздействием гравитационного поля планет возникают статические приливы на Солнце; образуется барицентр СС и, как следствие, происходит движение Солнца относительно барицентра. Воздействие планет на Солнце приводит к модуляции солнечной активности гравитационным полем планет, источником которого являются «осциллирующие массы» планет (здесь под «осцилляцией» подразумеваются все компоненты движения планет как вокруг Солнца, так и вокруг своей оси).

Считается, что группа ПЗГ «ответственна» лишь за т. н. «высокочастотную» компоненту в результирующем гравитационном поле, действующем на Солнце, на которую Солнце не способно отреагировать своим движением относительно барицентра СС в силу того, что суммарная масса ПЗГ весьма незначительна $-5,9\cdot10^{-6}$ массы Солнца. Гравитационное поле ПЗГ способно вызвать незначительные статические приливы на Солнце, которые могут привести лишь к изменению числа солнечных пятен. В рамках настоящего исследования эта активность названа **W**-активностью Солнца. Группа ПГ «ответственна» за т. н. «низкочастотную» компоненту в результирующем гравитационном поле, на которую Солнце «успевает откликнуться» всей своей

массой и начинает двигаться относительно барицентра СС, к тому же масса ПГ больше массы ПЗГ в 225 раз и составляет $1,3\cdot10^{-3}$ массы Солнца (см. табл. 1). В рамках настоящего исследования движение Солнца относительно барицентра СС названо **В**-активностью Солнца.

NB. Под определением «высокочастотная» и «низкочастотная» компоненты гравитационного поля подразумевается более высокая частота синодического движения ПЗГ вокруг Солнца по отношению к ПГ и соответственно разные частотные гармоники в результирующем гравитационном поле «осциллирующих» планет.

В настоящем исследовании применён метод инвариантного моделирования – метод «математического портретирования» процессов.

Статические приливы на Солнце (W-активность Солнца)

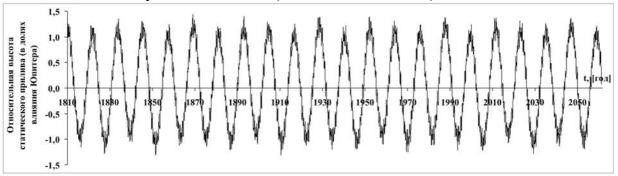


Рис. 1. Статические приливы на Солнце под воздействием всех планет (временной ход, гелиомеханическая модель) (1810-2060) гг.

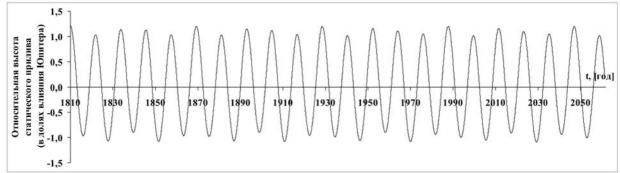


Рис. 2. Статические приливы на Солнце под воздействием $\Pi\Gamma$ + Π лутон (временной ход, гелиомеханическая модель) (1810-2060) гг.

Рассчитанная траектория движения всех планет повторяет траекторию движения ПГ с той лишь разницей, что в нее включены «высокочастотные» составляющие от ПЗГ (см. рис. 1 и 2).

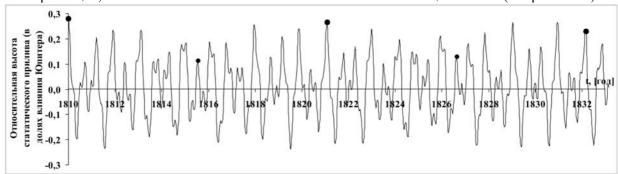


Рис. 3. Статические приливы на Солнце под воздействием Π 3 Γ (временной ход, гелиомеханическая модель) (1810-1833) гг.

В траектории движения $\Pi 3\Gamma$ амплитудно-частотные «портреты» позволяют выделить процессы с периодами: T=11,083 лет и T=6,778 лет (см. рис. 4). «Орбитальные портреты» обладают периодичностью, максимальной информативностью, минимальной избыточностью и внутренней (зеркальной) симметрией.

Поэтому можно утверждать, что ПЗГ определяют **W**-активность Солнца с периодами T=11,083 лет и T=6,778 лет, как «орбитальные портреты» ПЗГ в вызываемых ими статических приливах на Солнце.

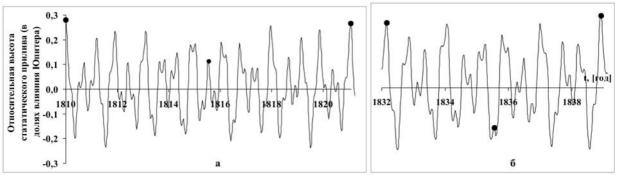


Рис. 4. Орбитальные амплитудно-частотные «портреты» ПЗГ с фиксированной фазой: T = 11,083 лет (a) и T = 6,778 лет (б).

Движение Солнца относительно барицентра Солнечной системы (В-активность Солнца)

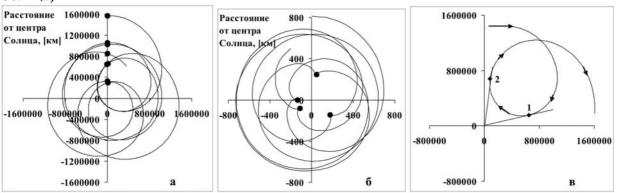


Рис. 5. Движение барицентра СС относительно центра Солнца: (а) - действие ПГ + Плутон (1810-1895) гг. Периоды 1810,00-1820,44; 1820,44-1833,89; 1833,89-1843,69; 1843,69-1857,69; 1857,69-1869,08; 1880,53; 1880,53-1893,92 гг. Радиус Солнца $R=695\,000$ км.; (б) - действие ПЗГ (1810-1816) гг. Период T=1,611 лет между «квазисингулярными» состояниями: 1810,81-1812,42; 1812,42-1814,03; 1814,03-1815,67 гг.; (в) — гипотетически возможное ретроградное движение Солнца: если барицентр пройдет мимо центра тяжести Солнца, не «охватив» его (между 1 и 2).

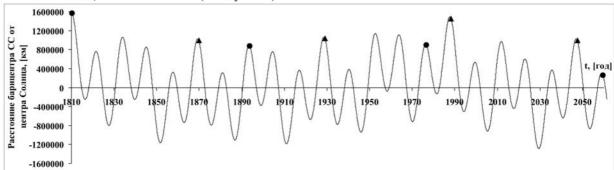


Рис. 6. Экскурсия барицентра СС: влияние ПГ + Плутон (1810-2060) гг. Круглыми маркерами отмечены циклы Глайсберга со средним периодом T = 82,972 лет: 1810,00-1893,36; 1893,36-1976,31; 1976,31-2058,92 гг. Треугольными маркерами отмечены циклы, обусловленные Юпитером и Сатурном со средним периодом T = 59,257 лет: 1810,00-1869,25; 1869,25-1928,50; 1928,50-1987,69; 1987,69-2047,03 гг.

 $\Pi\Gamma$ в первую очередь влияют на **B**-активность и в меньшей степени на **W**-активность, давая жизнь всем «долгопериодным» циклам солнечной активности, кратным среднему периоду T = 11,8532 лет (см. рис. 6). Элементарные периоды (между максимумами) представлены в табл. 2.

Барицентр «выходит» за пределы Солнца на расстояние, едва превышающее его собственный диаметр $D_s=1,39$ млн. км (см. рис. 5а, табл. 1). Девиационные изменения барицентра СС составляют около 2,758 млн. км, что примерно равно 1,8 % от 1 а. е.

Движение барицентра под влиянием ПЗГ происходит как бы «внутри» Солнца, и вся энергия ПЗГ «расходуется» на **W**-активность. Под воздействием ПЗГ выделяются периоды: T=8 лет и T=1,611 лет — «орбитальные портреты», при этом период T=1,611 лет между «квазисингулярными» состояниями кратен периоду T=8 лет (см. рис. 56,7).

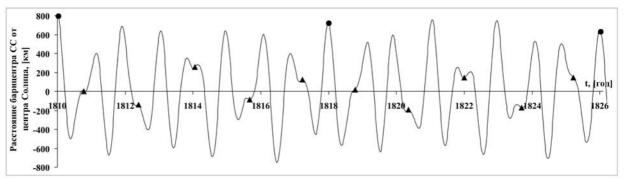


Рис. 7. Экскурсия барицентра СС: влияние ПЗГ (1810-1827) гг. Круглыми маркерами отмечены периоды T=8 лет. Треугольными маркерами отмечены периоды T=1,611 лет.

Обнаружены периодические «квазисингулярные» состояния [1] в барицентрическом движении Солнца под воздействием ПЗГ, характеризующиеся петлеобразной траекторией движения, с периодом T=1,611 лет (см. рис. 56). Этот период соответствует синодическому периоду Венеры T=1,5987 лет, а Земля и Венера находятся в «жестком» орбитальном резонансе.

К вопросу о ретроградном движении Солнца

В литературе поднимается вопрос о ретроградном движении Солнца (РДС). В данном исследовании РДС обнаружен не был. РДС возможен в случае, когда барицентр СС начнет перемещаться в обратную по отношению к направлению вращения планет сторону, т. е. если барицентр пройдет мимо центра тяжести Солнца, не «охватив» его. Тогда в определенном секторе движения барицентра (между касательными, проведенными из ЦТ Солнца (начало координат) к траектории барицентра) может быть возможно перемещение барицентра как бы в обратном направлении (см рис. 5в).

Однако «ретроградная» составляющая обнаруживается в элементах движения барицентра СС под воздействием Π 3 Γ - петлеобразная траектория движения (см рис. 5б). Площадь петли, как показывают расчеты, пропорциональна гравитационной энергии, сообщаемой планетами 3 Γ на РДС. Этой энергии, безусловно, недостаточно для РДС, но достаточно для возбуждения активности с периодом T = 1,611 лет, который обнаруживается в спектрах солнечной активности.

Сравнительный анализ В-активности и W-активности Солнца

Сравнительный анализ траекторий движения планет показывает, что, невзирая на то, что влияние планет на статические приливы и **B**-активность описываются одними и теми же уравнениями, графики, описывающие поведение планет, абсолютно различны (см. рис. 2 и 6, 3 и 7). Воздействие конкретной планеты на статический прилив на Солнце и на положение барицентра СС коренным образом отличаются (см. табл. 1), за исключением Юпитера.

Таблица 1. Сводная таблица влияния планет на W-активность и **B**-активность Солнца

таолица 1. Сводная таолица влияния планет на W -активность и B -активность Солнца										
	Влияние планеты на стат. прилив на Солнце (в долях влияния Юпитера)	прилив на Солнце	Барицентричес- кая поправка планеты, км	Влияние планеты на положение барицентра СС, (место)	Масса планеты в массах Солнца, Мр/Мs					
Меркурий	6,2·10 ⁻²	5	11,5906	9	1,7·10 ⁻⁷					
Венера	1,1·10 ⁻¹	2	266,6709	6	$2,4\cdot10^{-6}$					
Земля	$7,5\cdot 10^{-2}$	4	456,8236	5	3,0·10 ⁻⁶					
Mapc	4,8·10 ⁻³	6	80,4300	7	3,2·10 ⁻⁷					
Юпитер	1	1	778988,8605	1	9,5·10 ⁻⁴					
Сатурн	9,1·10 ⁻²	3	431219,9003	2	2,9·10 ⁻⁴					
Уран	$3,3\cdot10^{-3}$	7	131328,9726	4	4,4·10 ⁻⁵					
Нептун	$1,4\cdot10^{-3}$	8	234078,4835	3	5,2·10 ⁻⁵					
Плутон	2,7·10 ⁻⁷	9	45,8520	8	6,2·10 ⁻⁹					
Все планеты	1.35		1576477.5839		$1.3 \cdot 10^{-3}$					

ПГ слабо участвуют в W-активности Солнца, доминирующее влияние оказывают ПЗГ. ПГ определяют **B**-активность Солнца. W-активность, обусловленная ПГ, определяется различными комбинациями сидерических периодов ПГ. За W-активность Солнца ответственны ПЗГ с периодами: T = 11,083 лет; T = 8 лет; T = 6,778 лет, T = 1,611 лет, которые можно считать универсальными гелиофизическими константами.

О периодичности и циклах солнечной активности

Часть энергии гравитационного поля $\Pi\Gamma$ расходуют на **W**-активность Солнца, формируя «долгопериодные» циклы, которые определяются исключительно взаимным расположением $\Pi\Gamma$. В

формировании тех или иных циклов «участвуют» различные планеты. Так, 59-летний цикл зависит от взаимного расположения 2-х планет - Юпитера и Сатурна - поэтому этот цикл наиболее устойчив: максимальная экскурсия барицентра составляет 35 % (см. табл. 2, рис. 6).

Цикл Глайсберга — это более сложное образование, в его формировании принимают участие все ПГ, и он отчетливо проявляется только в периоды «парада планет» (в 1810,000; 1987,722 гг.). Экскурсия барицентра при его формировании весьма существенна — 81 % (см. табл. 2, рис. 6). Поэтому в настоящее время цикл Глайсберга в активности Солнца не наблюдается.

Таблица 2. Анализ «долгопериодных» циклов активности Солнца.

Исследуе	Цикл	Цикл	Элемен- тарные циклы, лет	Барицентрическая поправка, км			Экскурсия барицентра, %	
мый период, год	Юпитер- Сатурн, лет	Глайсберга, лет		ПЗГ	ПГ	Все планеты	Цикл Юпитер- Сатурн	Цикл Глайсберга
1810,000				815,52	1575662,06	1576477,58		
1821,583			11,583	-301,10	764078,33	763777,23		
1834,028			12,444	711,17	1057394,00	1058105,17		
1845,111			11,083	560,31	853752,11	854312,42		
1857,667			12,556	-508,85	324083,19	323574,34		
1869,222	59,222		11,556	-3,27	1028124,02	1028120,75	35	
1880,944			11,722	292,46	312793,35	313085,81		
1893,361		83,361	12,417	-565,61	881325,89	880760,28		44
1904,417			11,056	-611,84	756192,70	755580,86		
1917,000			12,583	755,00	365698,22	366453,22		
1928,528	59,306		11,528	-478,42	1062609,68	1062131,26	33	
1940,306			11,778	-48,78	383948,92	383900,14		
1952,722			12,417	244,23	1140448,93	1140693,16		
1963,778			11,056	343,39	1113840,91	1114184,30		
1976,278		82,917	12,500	-189,43	909264,25	909074,82		42
1987,722	59,194		11,444	70,92	1490488,22	1490559,14	5	
1999,500			11,778	-180,15	534288,57	534108,42		
2011,833			12,333	448,89	969134,39	969583,28		
2022,972			11,139	554,78	601970,59	602525,37		
2035,639			12,667	-158,61	368954,83	368796,22		
2047,000	59,278		11,361	473,82	1028790,87	1029264,69	35	
2058,917		82,639	11,917	148,55	306194,53	306343,08		81

ПЗГ даже если и оказывают влияние на **В**-активность Солнца, то это влияние весьма незначительно: барицентрическая поправка составляет не более 0,05 % по всему ансамблю планет.

Выводы

- 1. В результате разделения планет СС на две группы в активности Солнца выделяются две составляющие: **W**-активность, выражаемая числами Вольфа, за которую «ответственны» Π 3 Γ , и **B**-активность барицентрическая активность, за которую «ответственны» Π Γ .
 - 2. Солнечную активность с периодом 11 лет определяют именно ПЗГ, а не Юпитер.
- 3. Периоды T = 11,083 лет, T = 8 лет, T = 6,778 лет, T = 1,611 лет можно считать универсальными гелиофизическими константами, определяющими **W**-активность Солнца.
- 4. Юпитер в составе ПГ ответственен за «долгопериодные» циклы солнечной активности, кратные среднему периоду T = 11,853 лет. Точно определены периоды активности Солнца различной продолжительности, ранее определявшиеся исследователями эмпирически.
- 5. Траектория движения барицентра CC относительно Солнца имеет выраженный «незамкнутый» характер.
- **NB.** Известная «незамкнутость» траектории Меркурия может быть объяснена возмущением его движения барицентром СС.

Список литературы

- 1. Пономарева О.В. О механизме возмущения периодического движения полюса Земли планетами Солнечной системы. Материалы ежегодной конференции, посвященной дню вулканолога. Петропавловск-Камчатский: ИВиС ДВО РАН, 2007. С. 202-213.
- 2. Fukushima T. System of astronomical units and constants, IAU WGRS / SGAC. 1990. Circ. 13.
- 3. Seidelmann P.K., Abalakin V.K. et al. Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites: 2000 // Celestial Mechanics and Dynamical Astronomy. 2002. V. 82 (1). P. 83-111.