УДК 550.348

ВОЗДЕЙСТВИЕ ОХОТОМОРСКОГО ЗЕМЛЕТРЯСЕНИЯ 24 МАЯ 2013 г. $(M_W = 8.3)$ НА ТЕРРИТОРИИ КАМЧАТКИ И МИРА

© 2015 г. А. Ю. Чеброва¹, В. Н. Чебров¹, А. А. Гусев^{1, 2}, А. В. Ландер³, Е. М. Гусева¹, С. В. Митюшкина¹, А. А. Раевская¹

¹Камчатский филиал Геофизической службы РАН 683006 Петропавловск-Камчатский, бульвар Пийпа, 9, e-mail: ayuch@emsd.ru ²Институт вулканологии и сейсмологии ДВО РАН 683006 Петропавловск-Камчатский, бульвар Пийпа, 9, e-mail: gusev@emsd.ru ³Институт теории прогноза землетрясений и математической геофизики РАН 117997 Москва, ул. Профсоюзная, 84/32, e-mail: land@mitp.ru Поступила в редакцию 07.05.2014 г.

24 мая 2013 г. вблизи полуострова Камчатка произошло глубокое землетрясение с магнитудой $M_W = 8.3$, получившее название "Охотоморское". Оно привлекло особое внимание, в том числе и потому, что ощущалось на необычно больших расстояниях от эпицентра — почти до 10 тыс. км. В настоящей работе приведены данные о макросейсмических проявлениях Охотоморского землетрясения в прилегающем к эпицентру Камчатском регионе и в мире. Представлены значения пиковых ускорений в многочисленных пунктах Камчатки и мира, полученные по инструментальным записям сети цифровых сейсмических станций Дальнего Востока и Global Seismographic Network (GSN). Обсуждаются особенности инструментальных записей Охотоморского землетрясения.

DOI: 10.7868/S0203030615040033

ВВЕДЕНИЕ

24 мая 2013 г. в Камчатской сейсмофокальной зоне на глубине около 600 км произошло сильнейшее Охотоморское землетрясение с магнитудой $M_W = 8.3^1$ [Чебров и др., 20136]. Его эпицентр располагался в акватории Охотского моря примерно в 100 км западнее камчатского побережья. Охотоморское землетрясение – сильнейшее событие, зафиксированное мировыми сейсмическими сетями за весь предшествующий период инструментальных наблюдений на глубинах более 350 км [Ye et al., 2013]. По данным регионального Каталога Камчатского

филиала Геофизической службы (КФ ГС РАН)² Охотоморское землетрясение произошло 24 мая 2013 г. в 05 ч 44 мин 47 с, координаты гипоцентра: 54.755° с.ш., 153.785° в.д., глубина h = 629.8 км, энергетический класс $K_S = 17.0$ (рис. 1а, 16).

Тектоническая позиция очага Охотоморского землетрясения весьма интересна и связана с неоднородностью строения погружающейся Тихоокеанской плиты. Курило-Камчатская зона субдукции разделяется по простиранию на два сегмента: Курило-Южно-Камчатский и Северо-Камчатский. Граница между ними проходит в районе Авачинского залива и далее по падению погружающейся Тихоокеанской плиты [Левина и др., 2013]. На этой границе наблюдается резкое изменение максимальной глубины землетрясений приблизительно на 300 км. В то же время геологические данные указывают на различие в возрасте возникновения современных зон субдукции на этих двух сегментах [Авдейко и др., 2002; Lander, Shapiro, 2007]. Предполагается, что в процессе пододвигания Тихоокеанской плиты во временном интервале 10-2 млн лет к Камчатке причленилось нескольких террейнов, ныне сохранившихся на ее восточном побережье как крупные полуострова. В результате на северном сегменте, где произошло столкновение с террейнами, древняя зона субдукции была блокирована, а восточнее полуостровов образовалась новая, современная. Параллельно на древнем южном сегменте субдукция продолжается без существенных изменений вплоть до настоящего времени. Молодой северный участок слэба за время своего существования еще не

¹ Здесь и далее значения M_W представлены по данным каталога Global CMT.

² Региональный Каталог землетрясений Камчатки и Командорских островов / Банк сейсмологических данных Камчатки и Командорских островов. Фонды Камчатского филиала Геофизической службы РАН (http://data.emsd.iks.ru/dbquaketxt_min).

Рис. 1. Землетрясение 24 мая 2013 г. и его афтершоки по данным регионального каталога землетрясений КФ ГС РАН. 1 — область, в которой происходит скачок максимальной глубины землетрясения с ≈650 до ≈350 км.

а – эпицентры и механизмы (GCMT) землетрясений; б – проекция гипоцентров на меридиональный вертикальный разрез; в – гипоцентры в проекции на рельефную модель Курило-Камчатской сейсмофокальной зоны, вид с севера [Ландер и др., 2013].

успел погрузиться до максимальных глубин, на которых наблюдаются землетрясения. Это объясняет существование резкого уступа в рельефе сейсмофокальной зоны, отчетливо видного на переднем плане (под Камчаткой) на рис. 1в [Ландер и др., 2013].

Согласно описанной тектонической модели гипоцентр Охотоморского землетрясения распо-

лагается на северном краю древнего слэба, практически у нижнего окончания его сейсмогенной области. Дальше на север на глубине гипоцентра погружающаяся плита отсутствует. Судя по тому, что облако афтершоков протянулось лишь в южную сторону от главного гипоцентра (см. рис. 1), разрыв, породивший землетрясение, возник на краю погружающейся плиты и распространился внутрь нее более чем на 300 км. Такой картине соответствуют и механизмы главного события и его

сильнейших афтершоков³ (см. рис. 1а), которые отражают условия сжатия в плоскости погружающейся плиты, характерные для глубоких землетрясений всего региона.

Макросейсмический эффект Охотоморского землетрясения 2013 г. проявился в глобальных масштабах. По данным КФ ГС РАН событие 24 мая 2013 г. ощущалось в Камчатском крае с интенсивностью от 2 до 6 баллов, на остальной территории России – до 4–5 баллов, в Казахстане – до 2–3 баллов по шкале MSK-64 [Медведев и др., 1965]. По оперативным сведениям, собранным Геологической службой США (United State Geological Survey), автоматические оценки интенсивности [Wald et al., 2011] составили для Охотоморского землетрясения: в США – до 6 баллов, в Китае, Индии и Объединенных Арабских Эмиратах – до 4 баллов, в Японии и Польше – до 3 баллов, в Канаде, Индонезии и Мексике – до 2 баллов⁴. Имеются сведения о

макросейсмических проявлениях в Европе^{5, 6}. Таким образом, землетрясение ощущалось на эпицентральных расстояниях до 9500 км.

Ощущение землетрясения на столь больших расстояниях - редкое явление, однако оно не является уникальным. Известно, что удаленные проявления характерны для сильных глубоких землетрясений. Так, по данным Геологической службы США (USGS)⁷ Боливийское землетрясение 9 июня 1994 г. с h = 631 км и $M_W = 8.2$ ощущалось в Южной и Северной Америке на расстоянии до 8700 км от эпицентра; Колумбийское землетрясение 31 июля 1970 км, *h* = 651 км, mb = 8 – до 4000 км. По данным ГС РАН [Старовойт и др., 2008] землетрясение 28 июня 2002 г. на северо-востоке Китая, близ границы России, h = 570 км, $M_W = 7.3$ ощущалось в Казахстане, Москве и на Кавказе на расстояниях до 6500 км. Большинство глубоких землетрясений с магнитудами М≥7.5, зафиксированные USGS с 1994 г. в зоне субдукции Тихого океана, ощущались на расстояниях от $\frac{8}{2}$

1500 до 2500 км[°]

В районе очага Охотоморского землетрясения 2013 г. (51°-55° с.ш.; 152°-155° в.д.) за несколько лет до этого уже были зафиксированы события, имеющие сходные по характеру проявления на Камчатке и близлежащих территориях. За период июль 2008май 2013 г. в этой области произошло 4 ощутимых землетрясения: 5 июля и 24 ноября 2008 г. с *M_W* = 7.7 и $M_W = 7.3$ соответственно, 10 декабря 2009 г. с $M_W =$ = 6.3, 18 июля 2011 г. с $M_W = 5.5$. Для наиболее сильных глубоких Охотоморских землетрясений 2008 г. отмечаются следующие особенности: аномально высокие интенсивности в отдаленных от инструментального эпицентра пунктах; смещение максимальных макросейсмических проявлений в сторону выхода на поверхность погружающейся в мантию плиты; аномально низкие, по сравнению с общей макросейсмической картиной, интенсивности проявления в центральной Камчатке [Чеброва и др., 2014].

Макросейсмический эффект землетрясений, произошедших в Охотском море в 2008 г., подтверждается инструментальными данными⁷, полученными с помощью сети цифровых акселерографов, которая начала развиваться с 2004 г. на Камчатке, и к 2013 г. охватила большую часть Дальнего Востока. Поскольку Охотоморское землетрясение 24 мая 2013 г. имело обширную территорию воздействия, то его записи колебаний грунта представляют большой интерес, в том числе в связи с возможностью опробовать функционирование недавно созданной на Дальнем Востоке сети цифровых приборов для регистрации сильных движений грунта.

В работе рассматривается воздействие Охотоморского землетрясения 2013 г. на территории Камчатки и мира: приведены данные о макросейсмических проявлениях, собранные с максимальной детальностью в прилегающем к эпицентру Камчатском регионе, а также по всему миру; представлены значения пиковых ускорений в многочисленных пунктах Камчатки и мира, полученные по инструментальным записям сети цифровых сейсмических станций Дальнего Востока и Global Seismographic Network (GSN). Выделены особенности макросейсмической картины Охотоморского землетрясения. Проведен анализ затухания значений пиковых ускорений грунта с расстоянием. Отмечены спектральные особенности записей, отражаю-

³ Механизмы очагов землетрясений представлены по данным каталога Global CMT (http://www.globalcmt.org/ CMTsearch.html).

⁴ U.S. Geological Survey. Earthquake Hazards. DYFI. http:// earthquake.usgs.gov/earthquakes/dyfi/events/us/b000h4jh/us/ index.html

⁵ European Mediterranean Seismological Centre. 2013-05-24 $M_W = 8.3$ SEA OF OKHOTSK. http://www.emsccsem.org/Earthquake/Testimonies/comments.php?id=318696

⁶ Персональное сообщение, Päivi Mäntyniemi (Department of Geosciences and Geography, Institute of Seismology, University of Helsinki, paivi.mantyniemi@helsinki.fi).

⁷ U.S. Geological Survey. Earthquake Hazards. Historic World Earthquakes. http://earthquake.usgs.gov/earthquakes/world/ historical_country.php

⁸ Centennial Earthquake Catalog. http://earthquake.usgs.gov/ data/centennial/

щие особый характер макросейсмических проявлений Охотоморского землетрясения.

МЕТОДИКА СБОРА И ОБРАБОТКИ ДАННЫХ

Макросейсмические данные

Сбор сведений о макросейсмических проявлениях Охотоморского землетрясения 2013 г. осуществлялся несколькими способами.

1. Был проведен устный телефонный опрос по списку, включающему сейсмостанции, администрации, службы МЧС, полиции, больницы, школы, детские сады, почтовые отделения, военные части и т.п. во всех населенных пунктах Камчатского края.

2. Информация об ощущениях жителей Камчатки поступала через on-line анкету, размещенную на сайте КФ ГС РАН (http://www.emsd.ru/lsopool/poll.php).

3. По электронной почте были отправлены запросы с просьбой сообщить имеющуюся информацию о проявлениях землетрясения: в Управление по гидрометеорологии и мониторингу окружающей среды по Камчатскому краю; во все филиалы Геофизической службы РАН и Геофизической службы Сибирского отделения РАН; в МЧС России; в Институт физики Земли РАН (г. Москва); в лабораторию геодинамики Главной (Пулковской) Астрономической обсерватории РАН (г. Санкт-Петербург); в Горный институт Уральского отделения РАН (г. Пермь); в учреждения сейсмологической службы Азербайджана, Беларуси, Молдовы, Казахстанский национальный центр данных, а также некоторые другие организации.

4. Было отправлено письмо в Геологическую службу США (USGS) с просьбой ознакомить с данными о собранных макросейсмических проявлениях. В ответ сотрудником USGS Дэвидом Вальдом (David J. Wald) были любезно предоставлены полные тексты анкет, собранных с помощью системы "Did You Feel It" (DYFI) [Wald et al., 2011]. Оценки интенсивности, используемые USGS,

приблизительно соответствуют шкале MMÍ. В настоящей работе мы использовали предоставленные USGS анкеты для получения новых оценок по шкале MSK-64.

5. Использовалась информация, полученная в виде рассылки службами срочных донесений Геофизической службы РАН и КФ ГС РАН, ежедекадным сейсмологическим бюллетенем Северо-Курильска, а также данные, представленные на сайте Геологической службы США (USGS) и Европейского Средиземноморского Сейсмологического Центра (EMSC).

6. Проводился поиск сообщений о макросейсмических проявлениях землетрясения 24 мая 2013 г. в различных населенных пунктах России на новостных сайтах сети Интернет и в других интернет-ресурсах (блогах, чатах и т.п.).

7. Проводился поиск макросейсмической информации в научной литературе, посвященной глубокому Охотоморскому землетрясению [Маловичко и др., 2013; Рогожин и др., 2013; Старовойт и др., 2013; Маловичко, 2014; Надёжка и др., 2014; Татевосян и др., 2014]. В результате были обнаружены новые сведения о макросейсмических проявлениях в Европе; удалось получить подробные сведения он-лайн опросника Института сейсмологии Университета Хельсинки, любезно предоставленные Пяйви Ментиними (Päivi Mäntyniemi). По ним также были проведены оценки по шкале MSK-64.

Макросейсмическая информация, полученная через интернет-анкету, автоматически попадала в базу данных (БД) Единой информационной системы сейсмологических данных (ЕИС СД) КФ ГС РАН [Токарев и др., 2011]. Остальные макросейсмические данные заносились специалистами в БД ЕИС СД с помощью локальной web-страницы. Локальная и интернет страницы для внесения информации об ощущениях землетрясения являются компонентами подсистемы ЕИС СД для сбора и обработки макросейсмических данных (Подсистема) [Митюшкина и др., 2013].

Обработка макросейсмической информации проводилась с помощью другой составляющей Подсистемы – интерактивной программы The Poll Viewer, которая представляет собой "рабочее место" специалиста по макросейсмике [Митюшкина и др., 2013]. Программа The Poll Viewer дает предварительную автоматическую оценку макросейсмической интенсивности в каждом пункте с помощью алгоритма, заложенного в сейсмической шкале интенсивности землетрясений MMSK-92 (проект) [Шебалин, Аптикаев, 2003]; позволяет специалистам на основании собранных макросейсмических сведений производить окончательную экспертную оценку интенсивности в пунктах по шкале MSK-64. Все полученные значения интенсивности проявления землетрясения и замечания специалистов при работе с данными тут же попадают в БД ЕИС СД, формируется макросейсмический каталог. Программа The Poll Viewer также строит карты пункты-баллы, позволяя моментально визуализировать собранную и обработанную макросейсмическую информацию.

⁹ U.S. Geological Survey. Earthquake Hazards. The Modified Mercalli Intensity Scale. http://earthquake.usgs.gov/learn/ topics/mercalli.php

Рис. 2. Схема расположения цифровых станций Дальнего Востока. 1 — цифровая сейсмическая станция, 2 — эпицентр землетрясения 24 мая 2013 г.

Следует отметить, что Подсистема, введенная в эксплуатацию в марте 2013 г., незадолго до Охотоморского землетрясения 24 мая, успешно прошла проверку на работоспособность.

Региональные сейсмологические данные

На рис. 2 представлена сеть цифровых сейсмических станций Дальнего Востока, данные которых использовались при обработке и анализе землетрясения 24 мая 2013 г., $M_W = 8.3$. Сеть цифровых сейсмических станций оборудована: велосиметрами Guralp (Англия) СМС-3 и СМС-6; Streckeisen (Швейцария) STS-2; акселерометрами Guralp (Ангглия) СМС-5; регистраторами Guralp (Англия) DM-24 и GeoSIG (Швейцария) GSR-24 с частотой опроса 100 Гц [Чебров и др., 2013а]. Станции РЕТ, MA2 и BILL, которые входят в глобальную сеть цифровых станций GSN, оснащены велосиметрами Streckeisen STS-1 и оборудованием регистрации фирмы Kinemetrix "Quanterra"/24 (США) с частотой опроса 80 Гц. Станции с кодами A720, A732 принадлежат ДВО РАН, оснащены велосиметрами и регистраторами REFTEK (США) с частотой опроса 100 Гц. Сейсмометрические каналы станций, оснащенные велосиметрами, имеют код BH, акселерометрами – HN.

Для обработки записей был применен программный пакет, кратко описанный в [Гусева и др., 1989]. Его применение упрощается тем фактом, что акселерографы CMG-5 в рабочей полосе частот ведут регистрацию ускорения без аппаратурных искажений и не требуют обратной фильтрации. На рис. 3, в качестве примера регистрации движений грунта региональной станцией, приведена акселерограмма, полученная на цифровом акселерографе Guralp CMG-5TD станции Петропавловск, PET, $\Delta = 372$ км (см. рис. 3а), и рассчитанная из нее сейсмограмма скорости (см. рис. 36).

Отметим попутно, что данные большей части акселерографов собираются в реальном времени, и анализ, представленный в работе, может производиться немедленно в режиме близком к реальному времени.

(a) 2 $a, cm/c^2$ 0 -7 пик = 4.87 см/c^2 1 PET-Z (б) U, CM/C 0 $\pi \mu \kappa = -1.3 \, cm/c$ $^{-1}$ 0 50 100 150 200 Время, с

Рис. 3. Пример записи ускорения цифрового акселерографа Guralp CMG-5TD станции Петропавловск, PET (а) и рассчитанная из нее скорость колебаний грунта (б).

Телесейсмические данные

Изучение волновых полей на телесейсмических расстояниях проводилось по данным Global Seismographic Network (GSN), выбранным с помощью

системы WILBER 3 из архива IRIS¹⁰. Использовались трехкомпонентные записи (широкополосные каналы ВН) на станциях, расположенных на расстояниях до 90° от соответствующего эпицентра. Записи всех каналов пересчитывались на единую характеристику прибора, в качестве которого был выбран вертикальный велосиметр 00-BHZ станции Петропавловск (РЕТ) по состоянию на декабрь 2013 г. Этим обеспечивалась не только стандартизация, но и достаточное соответствие исправленных записей истинным движениям грунта на рабочих частотах 0.01-5 Гц. В настоящем исследовании интерпретировались преимущественно записи ускорений, пересчет в которые проводился в спектральной области параллельно с коррекцией характеристики прибора. Дополнительной фильтрации записей не проводилось.

Хотя при обращении к архиву IRIS использовался признак "Best Data", проводился дополнительный отбор качественных данных. Главным критерием отбраковки служило присутствие высокочастотного шума на рассчитанной записи ускорения. Обычно наличие шума определялось по начальному участку записи, предшествующему первому вступлению. Однако иногда шум появлялся и в середине записи, по-видимому, как реакция на высокие амплитуды. Станция исключалась из обработки, если шум фиксировался хотя бы на одной из ее компонент.

РЕЗУЛЬТАТЫ

Макросейсмические проявления

Охотоморское землетрясение произошло 24 мая в 17 ч 44 мин по камчатскому времени. В г. Петропавловске-Камчатском, в зависимости от района, оно ощущалось с интенсивностью от 4 до 5 баллов по шкале MSK-64. Необычной была продолжительность колебаний (около 1 минуты) многими жителями Камчатского полуострова отмечалось длительное и плавное покачивание, вызывающее головокружение. Через on-line анкету, размещенную на официальном сайте КФ ГС РАН (http://www.emsd.ru/lsopool/poll.php), cpasy же стали поступать сведения об ощущениях этого землетрясения. Интернет-система сбора макросейсмических данных оказалась очень полезной в течение часа была получена информация по 10 наиболее крупным камчатским населенным пунктам, что позволило предварительно оценить масштаб и интенсивность проявления землетрясения на территории Камчатки. Одновременно, в соответствии с инструкцией ГС РАН для землетрясений с интенсивностью $I \ge 5$, проводился телефонный опрос населения Камчатского края. Уже через 3 часа собранные сведения из 28 населенных пунктов Западной, Восточной и Центральной Камчатки показали, что землетрясение ощущалось на большей части Камчатского полуострова, но нигде не имело катастрофических проявлений. На тот момент максимальная интенсивность I = 5 баллов была зафиксирована на ГМС Кроноки и в г. Петропавловске-Камчатском.

На территории Камчатского края макросейсмические сведения были собраны из 64 пунктов, в 50 из которых землетрясение ощущалось с интенсивностью от 2 до 6 баллов по шкале MSK-64 (рис. 4). В ближайшем к эпицентру пункте, пос. Крутогорово (№ 1 в табл. 1), и других насе-

¹⁰ Incorporated Research Institutions for Seismology. Wilber 3. http://www.iris.edu/wilber3/find_event

64°

60°

56°

Рис. 4. Карта макросейсмического проявления Охотоморского землетрясения 24 мая 2013 г. на территории Камчатского края и Северных Курильских островов (шкала интенсивности MSK-64). 1 – интенсивность сотрясения в баллах; 2 – эпицентр землетрясения.

Северо-Курильск

о. Парамушир

156°

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 4 2015

152°

Nº	Название пункта, код региона	φ°	λ°	<i>I</i> , балл	Δ , км			
	Данные КФ ГС РАН							
	Россия							
1	Крутогорово, 41	55.03	155.90	4	139			
2	ГМС Ича, 41	55.58	155.58	Не ощ. ¹	146			
3	Соболево, 41	54.27	155.92	3	148			
4	Усть-Большерецк, 41	52.82	156.25	3-4	269			
5	Кавалерское, 41	52.92	156.57	3-4	274			
6	Пущино, 41	54.16	158.01	4	281			
7	Октябрьский, 41	52.67	156.22	5	282			
8	Шаромы, 41	54.42	158.25	4	290			
9	Ганалы, 41	53.70	157.94	4	294			
10	Апача, 41	52.93	157.13	4-5	299			
11	Хайрюзово, 41	56.85	157.02	Не ощ. ¹	309			
12	Сокоч, 41	53.16	157.65	5	309			
13	Мильково, 41	54.70	158.63	4	311			
14	ГМС Начики, 41	53.12	157.73	3	316			
15	Усть-Хайрюзово, 41	57.08	156.71	4	316			
16	Ковран, 41	57.15	156.96	3	332			
17	Эссо, 41	55.93	158.70	3-4	337			
18	Долиновка (Мильково), 41	55.13	159.05	3-4	339			
19	Раздольный, 41	53.27	158.32	4	339			
20	Елизово, 41	53.19	158.38	4-5	347			
21	Вулканный, 41	53.09	158.34	3-4	351			
22	Термальный, 41	52.95	158.20	4-5	352			
23	Паратунка, 41	52.97	158.25	4-5	354			
24	р. Карымшина (стационар КФ ГС), 41	52.84	158.15	4	357			
25	Новый, 41	53.11	158.55	4	362			
26	Вилючинск, 41	52.92	158.43	4-5	367			
27	Институт, 41	53.07	158.61	4	367			
28	Рыбачий, 41	52.93	158.52	4-5	371			
29	МГеоЭС-1, 41	52.55	158.02	4	371			
30	Петропавловск, 41	53.02	158.65	$4-5^{2}$	373			
31	Атласово, 41	55.64	159.53	4-5	378			
32	Радыгина, 41	53.11	158.85	4-5	379			
33	Лазо, 41	55.54	159.75	3	389			
34	Запорожье, 41	51.51	156.55	4	405			
35	Озерновский, 41	51.49	156.50	4	406			
36	ГМС Семячики, 41	54.12	159.98	6 ³	407			
37	Шумный, 41	51.49	156.62	4	409			
38	Долина Гейзеров (кордон), 41	54.44	160.13	6	410			
39	Козыревск, 41	56.06	159.87	3-4	411			
40	Паужетка, 41	51.47	156.81	4	417			
41	Маяк Круглый, 41	52.07	158.30	5-6	423			
42	Седанка, 41	57.73	158.27	3-4	432			

Таблица 1. Сводка оценок макросейсмической интенсивности для Охотоморского землетрясения 24.05.2013

Таблица 1. Продолжение

N⁰	Название пункта, код региона	φ°	λ°	<i>I</i> , балл	Δ , км
43	ГМС Водопадная, 41	51.81	158.08	Не ощ. ¹	434
44	Мыс Шипунский, 41	53.11	160.01	Не ощ. ¹	447
45	Тигиль, 41	57.77	158.66	4	451
46	ГМС Кроноки, 41	54.60	161.13	5	472
47	Мыс Лопатка, 41	50.87	156.65	Не ощ. ¹	473
48	Ключи, 41	56.31	160.85	3-4	477
49	Северо-Курильск, 65	50.67	156.10	4-5	480
50	Воямполка, 41	58.31	159.39	Не ощ.	524
51	Магадан, 49	59.57	150.80	4	565
52	Клепка, 49	59.75	151.48	4	573
53	Погодный, 41	56.26	162.59	4-5	579
54	Крутоберегово, 41	56.26	162.71	4-5	586
55	Палана, 41	59.10	159.95	3-4	611
56	Лесная, 41	59.48	160.57	Не ощ.	666
57	ГМС мыс Озерной, 41	57.65	163.23	Не ощ.	666
58	Ивашка, 41	58.55	162.29	3	669
59	Талая, 49	61.10	152.39	2	711
60	Oxa, 65	53.60	142.95	3	716
61	Ныврово, 65	54.33	142.63	2	721
62	Тунгор, 65	53.39	142.96	2-3	722
63	Карага, 41	59.18	162.92	2-3	740
64	Кострома, 41	59.08	163.15	Не ощ.	744
65	Occopa, 41	59.25	163.06	2	751
66	Москальво, 65	53.35	142.30	2-3	765
67	Тымлат, 41	59.48	163.17	Не ощ.	772
68	Никольское, 41	55.20	165.98	4	779
69	Ноглики, 65	51.78	143.13	3	781
70	Ильпырский, 41	59.97	164.18	Не ощ.	850
71	Тымовское, 65	50.86	142.68	4	862
72	Пильво, 65	50.04	142.18	3	944
73	Сусуман, 49	62.78	148.15	3-4	949
74	Тиличики, 41	60.43	166.05	Не ощ.	963
75	Парень, 41	62.42	163.08	Не ощ.	1006
76	Макаров, 65	48.62	142.78	Не ощ.	1018
77	Углегорск, 65	49.08	142.07	4	1020
78	Каменское, 41	62.46	166.22	Не ощ.	1116
79	Рейдово, 65	45.27	148.03	2-3	1131
80	Углезаводск, 65	47.33	142.62	2-34	1134
81	Курильск, 65	45.23	147.87	3-4	1140
82	Санаторный, 65	47.10	142.63	2	1153
83	Китовое, 65	45.15	147.53	3-4	1157
84	Южно-Сахалинск, 65	46.95	142.73	3-4	1162
85	Горячие Ключи, 65	45.03	147.76	2-3	1164
86	Троицкое, 65	46.92	142.65	4	1168

Таблица 1. Продолжение

N⁰	Название пункта, код региона	φ°	λ°	<i>I</i> , балл	Δ , км
87	Горное, 65	44.93	147.57	4-5	1179
88	Холмск, 65	47.06	142.05	3	1184
89	Анива, 65	46.72	142.52	4	1192
90	Малокурильское, 65	43.88	146.83	3	1309
91	Южно-Курильск, 65	44.06	145.79	2	1321
92	Горячий Пляж, 65	44.00	145.80	2	1327
93	Головнино, 65	43.74	145.52	Не ощ.	1362
94	Хабаровск, 27	48.48	135.07	$2-4^{2}$	1462
95	Якутск, 14	62.03	129.73	3-4	1605
96	Благовещенск, 28	50.26	127.54	$3-4^{2}$	1834
97	Владивосток, 25	43.12	131.90	Не ощ.	2042
98	Усть-Илимск, 38	58.00	102.67	2	3092
99	Иркутск, 38	52.28	104.30	2-3	3216
100	Братск, 38	56.12	101.60	2	3217
101	Ангарск, 38	52.57	103.92	Ощущ.	3226
102	Вихоревка, 38	56.12	101.17	3	3242
103	Саянск, 38	54.12	102.17	2	3263
104	Нижнеудинск, 38	54.90	99.02	Ощущ.	3418
105	Зеленогорск, 24	56.10	94.58	2	3624
106	Лесосибирск, 24	58.23	92.48	3	3652
107	Железногорск, 24	56.25	93.53	2-3	3677
108	Сосновоборск, 24	56.13	93.37	Ощущ.	3691
109	Красноярск, 24	56.02	92.87	3	3725
110	Ачинск, 24	56.27	90.50	Ощущ.	3847
111	Кемерово, 42	55.33	86.07	2-3	4141
112	Томск, 70	56.49	84.95	2	4143
113	Новосибирск, 54	55.03	82.92	2-3	4333
114	Искитим, 54	54.63	83.30	2	4334
115	Бердск, 54	54.75	83.10	2	4338
116	Линево, 54	54.46	83.38	2-3	4339
117	Барнаул, 22	53.36	83.79	2-3	4378
118	Омск, 55	54.97	73.38	Не ощ.	4851
119	Екатеринбург, 66	56.83	60.58	Не ощ.	5366
120	Мурманск, 51	68.97	33.08	2-3	5446
121	Пермь, 59	58.01	56.25	2-3	5479
122	Апатиты, 51	67.57	33.39	Ощущ.	5555
123	Ижевск, 18	56.85	53.22	2	5700
124	Уфа, 2	54.73	55.97	3	5737
125	Стерлитамак, 2	53.63	55.95	Ощущ.	5822
126	Набережные Челны, 16	55.70	52.33	3-4	5829
127	Елабуга, 16	55.77	52.03	Ощущ.	5837
128	Салават, 2	53.37	55.93	Ощущ.	5843
129	Нижнекамск, 16	55.63	51.82	Ощущ.	5857
130	Заинск, 16	55.30	52.02	Ощущ.	5874
131	Альметьевск, 16	54.90	52.30	Ощущ.	5893

Таблица 1. Продолжение

N⁰	Название пункта, код региона	ϕ°	λ°	<i>I</i> , балл	Δ , км				
132	Казань, 16	55.79	49.11	3	5964				
133	Зеленодольск, 16	55.85	48.52	3	5984				
134	Оренбург, 56	51.77	55.10	2-3	6008				
135	Самара, 63	53.18	50.12	Ощущ.	6129				
136	Нижний Новгород, 52	56.33	44.01	3	6134				
137	Костромская область			Ощущ.	6135				
138	Иваново, 37	57.00	40.98	2-3	6198				
139	Навашино, 52	55.53	42.20	2-3	6275				
140	Выкса, 52	55.32	42.17	2-3	6294				
141	Санкт-Петербург, 78	59.95	30.32	2-3	6318				
142	Тверь, 69	56.86	35.91	24	6403				
143	Москва, 77	55.75	37.62	$2-4^{2}$	6437				
144	Рязань, 62	54.62	39.72	Ощущ.	6453				
145	Тула, 71	54.20	37.62	2	6574				
146	Калуга, 40	54.51	36.25	2 ⁴	6599				
147	Смоленск, 67	54.78	32.05	2-3	6731				
148	Нововоронежская АЭС, 36	51.28	39.20	$2-3^{5}$	6769				
	Казахстан	I	I	I	I				
149	Усть-Каменогорск	49.95	82.62	2-3	4653				
150	Курчатов	50.76	78.54	3	4837				
151	Астана	51.18	71.40	2	5208				
152	Алматы	43.25	76.90	2	5459				
153	Уральск	51.23	51.37	2	6230				
154	Атырау	47.12	51.88	2-3	6544				
155	Тенгиз	46.15	53.38	Ощущ.	6550				
	Данные USGS ⁶								
(кроме сведений по России и Казахстану)									
	CIIIA								
156	Кодьяк	57.58	-153.38	3	3203				
157	Анкор Пойнт	59.81	-151.66	2	3231				
158	Хомер	59.53	-151.19	3	3265				
159	Палмер	61.60	-149.12	Ощущ.	3318				
160	Саттон	61.71	-148.88	3	3327				
161	Джуно	58.47	-134.15	3	4216				
162	Питерсберг	56.82	-133.17	3	4353				
163	Гонолулу	21.33	-157.83	3	5467				
164	Сиэтл	47.69	-122.29	3	5542				
165	Голета	34.49	-120.05	4–5	6716				
166	Ирвайн	33.75	-117.74	2	6917				
167	Рок-Айленд	41.48	-90.57	3-4	7706				
	Япония								
168	Саппоро	43.06	141.34	3	1582				
169	Аомори	40.83	140.74	3	1823				
170	Фурукава	38.57	140.96	3	2042				

Таблица 1. Окончание

N⁰	Название пункта, код региона	φ°	λ°	<i>I</i> , балл	Δ, км					
171	Сендай	38.26	140.89	2	2076					
172	Токио	35.67	139.77	3	2380					
173	Иокогама	35.47	139.62	3	2406					
	Китай									
174	Чунцин	29.57	106.58	3	4663					
175	Ченду	30.67	104.07	3	4725					
176	Сичан	27.88	102.30	3	5073					
Канада										
177	Ванкувер	49.28	-123.13	2	5380					
	Индия									
178	Чандигарх	30.75	76.78	3	6457					
179	Мохали	30.78	76.69	3	6461					
180	Нойда	28.58	77.33	Ощущ.	6604					
181	Дели	28.67	77.21	3	6604					
182	Гургаон	28.47	77.01	3	6634					
	Польша									
183	Гданьск	54.36	18.64	2-3	7211					
	Индонезия									
184	Маланг	-7.98	112.62	2-3	7956					
	Объединенные Арабские Эмираты	<u>.</u>	Į.	Į	Į.					
185	Дубай	25.27	55.33	3	8255					
	Мексика		•	1	•					
186	Икстаксокитлан	18.85	-97.07	3	9470					
		Данные EMSC ⁷	•	1	•					
187	Пембертон, <i>Канада</i>	50.32	-122.82	Ощущ.	5324					
188	Бишкек, <i>Киргизия</i>	42.87	74.57	Ощущ.	5628					
189	Таллин, <i>Эстония</i>	59.42	24.75	Ощущ.	6539					
190	Ставрополь, <i>Россия</i>	45.03	41.97	Ощущ.	7204					
191	Новороссийск, <i>Россия</i>	44.72	37.77	Ощущ.	7424					
192	Феррара, Италия	44.83	11.58	Ощущ.	8384					
193	Милан, <i>Италия</i>	45.47	9.20	Ощущ.	8385					
	Данные	Института сейс	мологии							
	Унин	верситета Хельси	нки ⁸							
	Финляндия									
194	Китеэ	62.20	30.09	2	6121					
195	Ювяскюля	62.23	25.74	3	6246					
196	Каухайоки	62.51	22.30	3	6314					
197	Коувола	60.87	26.70	2-3	6345					
198	Кангасала	61.48	23.95	2	6367					
199	Тампере	61.50	23.76	2-3	6370					
200	Хямеэнлинна	60.99	24.42	2-3	6400					
201	Лахти	60.98	22.65	2	6451					
202	Сало	60.39	23.12	2	6494					

Примечание. ¹ – отсутствие ощущений в пункте вызывает сомнение; ² – в разных районах города землетрясение ощущалось с разной интенсивностью: "от – до", ³ – описания проявлений отсутствуют; ⁴ – оценка интенсивности из [Старовойт и др., 2013]; ⁵ – оценка интенсивности из [Надёжка и др., 2014]; ⁶ – оценка интенсивности данных USGS проведена по шкале MSK-64; ⁷ – в используемом источнике не приведены оценки интенсивности; ⁸ – оценка интенсивности данных Института сейсмологии Университета Хельсинки проведена по шкале MSK-64.

ленных пунктах западного побережья Камчатского полуострова землетрясение ощущалось с интенсивностью не более 4 баллов (кроме пос. Октябрьский, I = 5 баллов). В поселках западного побережья наблюдалось раскачивание висячих предметов, колебание легких предметов и жидкости в открытых сосудах. В пос. Октябрьском ощущалась сильная жесткая тряска. Люди в испуге вставали в безопасное место, некоторые покидали помещения. Сильно раскачивались висячие предметы. Скрипела, раскачивалась мебель и ЖК телевизоры, выплескивалась вода из аквариума, рыбки в нем метались.

Колебания наибольшей интенсивности были отмечены в пунктах восточного побережья: I == 6 баллов на ГМС Семячики и в Долине Гейзеров (см. табл. 1, № 36 и 38), *I* = 5-6 баллов на маяке Круглом (см. табл. 1, № 41). Сотрудники ГМС Семячики определили интенсивность сотрясений самостоятельно и передали ее значение по радиосвязи без описания проявлений. В Долине Гейзеров наблюдались камнепады на обрывистых склонах. На кордоне сложилась телескопическая 12-ти метровая мачта радиоантенны — в редукторе сломался стопор, удерживающий ее в развернутом состоянии. У респондента, находившегося на улице, возникло легкое головокружение. На маяке Круглом скрипела и раскачивалась мебель, дверцы мебели, двери и различные предметы, дребезжала и подпрыгивала посуда, трещали окна, раскачивались картины. Наблюдалось сотрясение здания в целом, скрипели полы, потолки и стены. Метались, лаяли собаки. Возникли трещины в потолочном перекрытии и в несущей стене по всей ее высоте. На башне светомаяка треснуло по диагонали большое штормовое стекло.

Следует отметить, что отсутствие макросейсмических проявлений в некоторых камчатских пунктах вызывают сомнение. Это может быть связано с человеческим фактором.

Для сбора макросейсмических сведений о проявлениях Охотоморского землетрясения на территории России за пределами Камчатки было отправлено 23 запроса. Ответы пришли на 13 из них. Наиболее подробные сведения прислали А.Д. Завьялов (ИФЗ РАН), Е.П. Семенова (Сахалинский филиал ГС РАН), Н.А. Гилева (Байкальский филиал ГС РАН), Л.И. Карпенко (Магаданский филиал ГС РАН), Л.И. Карпенко (Магаданский филиал ГС РАН), Р.А. Дягилев (Горный институт УрО РАН, Пермь). В итоге, с учетом сведений об ощущениях землетрясения, найденных в Интернете, была получена макросейсмическая информация из 81 пункта на территории России помимо Камчатского края, в 76 из которых землетрясение ощущалось с интенсивностью от 2 до 4–5 баллов (см. табл. 1; рис. 5).

На территории России за пределами Камчатского края сотрясения наибольшей интенсивности, I == 4-5 баллов, были отмечены в двух пунктах - г. Северо-Курильске и пос. Горное Сахалинской области (см. табл. 1, № 49, 87). В остальных российских населенных пунктах землетрясение ощущалось с интенсивностью от 2 до 4 баллов преимущественно людьми, находившимися в покое на верхних этажах. В этих пунктах отмечались плавные покачивания или вибрация, легкие колебания висячих предметов, слабое покачивание жидкости в открытых сосудах. Более сильные ощущения, такие как раскачивание и небольшое смещение мебели, отмечались только на самых верхних этажах; при этом на нижних этажах тех же зданий колебания могли ощущаться очень слабо или не ощущаться вообще. Многие люди по всей стране отмечали ощущение головокружения и тошноты, возникшие во время толчков. Жителей, ранее не сталкивавшихся с проявлениями землетрясений, это событие испугало. В некоторых городах Сибири и европейской части России во время и после землетрясения эвакуировали сотрудников высотных офисных зданий. В Москве интенсивность проявления землетрясения варьировалась в пределах от 2 до 4 баллов, очевидно, в зависимости от типа грунтов и качества застройки.

Землетрясение ощутили жители Дальневосточного, Сибирского, Приволжского, Центрального, Южного, Северо-Кавказского и Северо-Западного федеральных округов Российской Федерации. В Приморском крае (Дальневосточный федеральный округ) и Свердловской области (Уральский федеральный округ), находящихся в окружении территорий, где землетрясение вызвало ощутимые колебания, информации о его проявлениях не обнаружено.

Из Казахстанского национального центра данных были получены макросейсмические сведения (*I* до 3 баллов) по 7 населенным пунктам, расположенным на территории Казахстана (см. табл. 1, № 149–155), что позволило дополнить и уточнить данные по ощущениям землетрясения в этой стране, размещенные Геологической службой США (USGS).

По сведениям, полученным от сейсмологических служб Молдовы, Беларуси и Азербайджана, землетрясение на территории этих стран не ощущалось. В то же время, с помощью интернетопросников европейских сейсмологических институтов зафиксированы макросейсмические проявления на территории Финляндии, Эстонии, Италии, Киргизии (см. табл. 1, № 187–202).

Рис. 5. (а) Карта макросейсмического проявления Охотоморского землетрясения 24 мая 2013 г. (шкала интенсивности MSK-64). Детальнее: (б) Япония–Сахалин–Приморье, эпицентральные расстояния $\Delta = 10^{\circ}-20^{\circ}$; (в) Центральная Россия–Урал, $\Delta = 50^{\circ}-60^{\circ}$; (г) Сибирь–Северный Казахстан, $\Delta = 30^{\circ}-40^{\circ}$.

1 – интенсивность сотрясения в баллах; 2 – эпицентр землетрясения; 3 – эпицентральное расстояние в градусах.

Кроме того, в табл. 1 и на рис. 5 приведены сведения о макросейсмических проявлениях в разных пунктах Земли, полученные с помощью системы DYFI [Wald et al., 2011] и любезно предоставленные Геологической службой США (USGS). На основе текстов поступивших анкет проведены новые оценки интенсивности по шкале MSK-64 (см. табл. 1, № 156-186). В большинстве анкет отмеченные респондентами проявления землетрясения 24 мая не превышают I = 3 балла. Лишь в двух пунктах зафиксированы более ощутимые сотрясения: *I* = 4–5 баллов – в г. Голета, США (№ 165) и *I* = 3–4 балла – в г. Рок-Айленд, США (№ 167).

Пиковые ускорения колебаний грунта

В табл. 2 приведены материалы обработки региональных сейсмических записей — максимальные пиковые амплитуды ускорений и скоростей на одном из горизонтальных каналов цифровых сейсмических станций Дальнего Востока. При наличии на станции акселерографа приводятся результаты, полученные с его помощью, в противном случае даются результаты, полученные с помощью велосиметра. Помимо пиковых ускорений в табл. 2 содержатся значения интенсивностей Охотоморского землетрясения: I – макросейсмическая интенсивность в тех же пунктах по данным КФ ГС РАН и Ia – инструментальная интенсивность, рассчитанная по формуле (1) из [Проект, 2011]:

$$I_a = 2.5 \lg(a_{\text{пик}}) + 1.89, \tag{1}$$

где $a_{\text{пик}}$ — максимальные амплитуды пикового ускорения в см/с² на горизонтальных каналах.

На рис. 6 показано распределение пиковых ускорений на горизонтальных каналах по данным телесейсмических записей Охотоморского землетрясения 24 мая 2013 г. За пиковое принято максимальное значение амплитуды горизонтального

Таблица 2. Максимальные пиковые амплитуды сильных движений грунта, зафиксированные сетью цифровых сейсмических станций Дальнего Востока

N⁰	Название	Код	Коорд	инаты	A		$a_{\text{пик}},$	V _{пик} ,	Ia,	I^4 ,
п/п	станции	станции ¹	φ°, с.ш.	λ°, в.д.	Δ, км	<i>г</i> , км	см/с ²	см/с	балл	балл
1	Николаевка	NIC ²	53.045	158.341	353	721	7.370	1.603	4.1	
2	Карымшина	KRMR	52.828	158.131	356	723	-7.110	-0.855	4.0	4
3	Вилючинск	VIL ²	52.931	158.405	364	727	-9.020	0.921	4.3	4-5
4	Институт	INSR	53.066	158.608	367	728	-7.790	-1.350	4.1	4 ⁵
5	НИГТЦ	NII ²	53.080	158.641	368	728	8.760	1.920	4.2	5 ⁵
6	Дачная	DCH ²	53.057	158.639	369	729	-6.580	-1.120	3.9	5 ⁵
7	Звездный	SPZ ²	53.055	158.660	371	730	-5.050	-0.941	3.6	4 ⁵
8	Администрация-ПК	ADM ²	53.023	158.650	372	731	-6.590	0.931	3.9	4-5
9	Петропавловск	PET	53.024	158.653	372	731	3.460	0.895	3.2	4-5
10	Рыбачий	RIB ²	52.917	158.533	372	731	-11.090	1.280	4.5	4-5
11	Дальний	DALK	53.031	158.754	377	733	-5.960	0.904	3.8	3-5
12	Школа	SCH ²	52.958	158.674	377	733	-6.390	0.965	3.9	3-5
13	Налычево	NLC	53.171	159.348	404	747	16.100	-1.360	4.9	_
14	Русская	RUS	52.431	158.513	405	748	11.900	0.865	4.6	_
15	Жупаново	GPN ²	54.082	159.989	408	749	19.800	2.160	5.1	6
16	Паужетка	PAU	51.468	156.815	417	755	4.560	1.130	3.5	4
17	Тумрок_источники	TUMR	55.202	160.399	424	759	-5.870	-0.831	3.8	_
18	Ходутка	KDTR	51.809	158.077	434	764	-12.600	-0.981	4.6	0
19	Шипунский	SPN	53.107	160.011	446	771	-62.300	4.810	6.4	0
20	Ключи	KLY	56.313	160.852	476	789	-4.170	1.420	3.4	3-4
21	Северо-Курильск	SKR	50.670	156.116	480	791	15.400	-1.040	4.9	4-5
22	Магадан	MA2	59.575	150.768	565	845	-0.978^{3}	0.884 ³	1.9	4
23	Морской порт	UK3 ²	56.222	162.523	573	851	-10.300	2.040	4.4	4-5
24	Администрация-УК	UK1 ²	56.263	162.586	578	854	7.050	1.650	4.0	4-5
25	Водозабор	UK2 ²	56.232	162.646	581	856	-10.020	-1.960	4.4	4-5
26	Крутоберегово	KBG	56.258	162.713	585	859	-10.500	-2.050	4.4	4-5
27	Палана	PALN	59.094	159.968	610	876	-1.040^{3}	-0.412^{3}	1.9	3-4
28	Oxa	OKH	53.601	142.946	715	952	-3.480	1.120	3.2	3
29	Беринг	BKI	55.194	165.984	778	1000	-5.930	1.001	3.8	4 ⁶
30	Тиличики	TILK	60.446	166.145	967	1153	-1.370	-0.843	2.2	0
31	Углегорск	UGL	49.076	142.065	1018	1197	2.240	0.627	2.8	4
32	Каменская	KMSK	62.467	166.206	1113	1279	1.660^3	-0.516^{3}	2.4	0
33	Ванино	A732 ²	49.091	140.255	1116	1281	-0.625	-0.408	1.4	—
34	Курильск	KUR	45.231	147.873	1137	1299	1.070	-0.265	2.0	3-4
35	Новоалександровск-сф	NVA	47.032	142.720	1152	1313	2.130	-0.741	2.7	—
36	Южно-Сахалинск	SSH ²	46.959	142.760	1157	1317	0.743 ³	-0.505^{3}	1.6	3-4
37	Южно-Курильск	YUK	44.055	145.786	1318	1460	2.510	0.606	2.9	2
38	Туманное	YUK3 ²	43.992	145.772	1325	1466	1.530	-0.238	2.4	2
39	Чегдомын	A720 ²	51.136	133.041	1437	1568	0.807	-0.578	1.7	—
40	Билибино	BILL	68.065	166.453	1613	1732	0.588 ³	-0.313^{3}	1.3	—
41	Терней	TEY	45.062	136.601	1622	1740	-0.285	0.330	0.5	—
42	Мыс Шульца	MSHR	42.581	131.157	2115	2207	0.125 ³	0.136 ³	-0.4	0

Примечание. ϕ — широта, λ – долгота; Δ – эпицентральное расстояние, *r* – гипоцентральное расстояние; *a*_{пик} – максимальная амплитуда пикового ускорения на горизонтальных каналах; *v*_{пик} – максимальная амплитуда пиковой скорости на горизонтальных каналах; *Ia* – инструментальная интенсивность, рассчитанная по формуле (1); *I* – макросейсмическая интенсивность, полученная сейсмографов"; ³ – приведены данные по каналу велосиметра; ⁴ – оценка интенсивности, полученная для населенного пункта в целом, а не конкретно в пункте, в котором установлена сейсмостанция; ⁵ – оценка интенсивности, полученная в здании, где установлена сейсмостанция.

Рис. 6. Карта распределения пиковых ускорений по данным телесейсмических записей Охотоморского землетрясения 24 мая 2013 г.

1 — эпицентр землетрясения; 2 — логарифм амплитуды пикового ускорения [мкм/с²] на горизонтальных каналах; 3 — эпицентральное расстояние в градусах.

вектора. Для сокращения записи на карте указаны значения десятичных логарифмов пикового ускорения в мкм/с².

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Особенности воздействия в Камчатском регионе

Анализ результатов воздействия Охотоморского землетрясения 2013 г. на территорию Камчатки показал, что полученные макросейсмические и инструментальные данные в целом согласуются между собой. В обоих полях наиболее высокие значения наблюдались не в ближайших от эпицентра пунктах, а на восточном побережье Камчатки, на продолжении наклонного участка погружающейся океанической плиты. Максимальные интенсивности зарегистрированы в пунктах: ГМС Семячики, Долина Гейзеров и ГМС Кроноки (см. табл. 1; рис. 4), а максимальная амплитуда ускорения грунта на станции Шипунский, SPN (см. табл. 2; рис. 2). Такое распределение типично для глубоких землетрясений Японско-Курило-Камчатского региона, и впервые было замечено еще в начале XX века для событий сейсмофокальной зоны в Японии [Utsu, 1966]. На Камчатке впервые эта особенность была четко продемонстрирована макросейсмическими данными, полученными для Тумрокских землетрясений 2003 и 2004 гг., произошедших на глубине около 200 км [Левина и др., 2010]. Охотоморские землетрясения 2008 г. с $M_W = 7.7$ и $M_W = 7.3$ также имели подобное аномальное распределение интенсивности воздействия в камчатском регионе [Чеброва и др., 2014].

На рис. 7 приведены графики затухания с гипоцентральным расстоянием пикового ускорения (см. рис. 7а) и пиковой скорости (см. рис. 7б). Можно видеть, что калибровочная функция K_S Федотова (прямая линия на графике зависимости пиковой скорости) [Федотов, 1972], дает грубое описание спада амплитуд. Достаточно большой разброс на графиках связан, в частности, с описанным выше эффектом завышенных амплитуд на станциях Восточной Камчатки. В то же время на расположенных на сопоставимых эпицентральных расстояниях северных и западных станциях Палана (PALN) и Магадан (MA2) зафиксированы аномально низкие амплитуды колебаний.

19

Рис. 7. Зависимости пиковых ускорений (а) и скорости (б) от гипоцентрального расстояния. 1 – на горизонтальных компонентах, 2 – на вертикальных компонентах, 3 – калибровочная кривая Федотова (условно экстраполирована за S–P = 80 с).

Особенности воздействия на телесейсмических расстояниях

Как отмечено выше, Охотоморское землетрясение 2013 г. выделяется среди других событий очень большой площадью макросейсмических проявлений. В удаленных до 9500 км от инструментального эпицентра пунктах наблюдались аномально высокие макросейсмические интенсивности колебания грунта с *I* ≥ 2 баллов (см. рис. 5). Относительно высокие амплитуды колебаний от Охотоморского землетрясения демонстрируют и инструментальные записи. На рис. 8 для сравнения показаны изменения пиковых ускорений с расстоянием для Охотоморского и практически совпадающих с ним по магнитуде ($M_W = 8.2 - 8.4$) двух мелкофокусных Симуширских землетрясений (15 ноября 2006 г. и 13 января 2007 г.). На телесейсмических расстояниях область пиковых ускорений от глубокого Охотоморского землетрясения устойчиво смещена вверх относительно аналогичных по магнитуде мелкофокусных приблизительно на 0.7 в логарифмической шкале (то есть соответствующая амплитуда в 5 раз выше). Это соответствует увеличению интенсивности примерно на 1.75 балла.

Однако значения пиковых ускорений, пересчитанные в интенсивности по формуле (1), на станциях с эпицентральным расстоянием более 1500 км, достигают только Ia = 0-2 балла (см. рис. 8), то есть приблизительно на 2 балла ниже зарегистрированных макросейсмических проявлений. Разли-

Рис. 8. Зависимость горизонтальных пиковых ускорений от эпицентрального расстояния.

1 — глубокое Охотоморское землетрясение 2013 г., $M_W = 8.3$; 2 — мелкофокусные Симуширские землетрясения 2006 и 2007 гг. с $M_W = 8.4$ и $M_W = 8.2$ соответственно. Пиковые значения определены по отрезку записей длиной в час. Правая вертикальная шкала пиковое ускорение, пересчитанное в баллы по формуле (1). При построении использованы 84 записи Охотоморского землетрясения и 129 — Симуширских.

Рис. 9. Спектры Фурье ускорения грунта на станции Обнинск, OBN, полученные для сильнейших землетрясений Японско-Курило-Камчатского региона. 1 – Симуширское землетрясение 2006 г., M_W = 8.4; 2 – Симуширское землетрясение 2007 г., M_W = 8.2; 3 – землетрясение в Тохоку 2011 г., M_W = 9.1, 4 – Охото-морское землетрясение 2013 г., M_W = 8.3.

чие инструментальных и макросейсмических интенсивностей, вероятно, связано с особенностями местоположения сейсмических станций. В связи с этим заметим, что макросейсмические ощущения в европейской части России в основном наблюдались на верхних этажах зданий.

Дополнительную информацию об эффекте повышенных амплитуд на больших расстояниях от глубокого землетрясения несут частотные спектры обсуждаемых записей. На рис. 9 сравниваются спектры ускорений на одной станции Обнинск (OBN) Охотоморского землетрясения и трех мелкофокусных. Помимо использованных выше двух Симуширских событий здесь участвует также запись сильнейшего землетрясения Тохоку 11 марта 2011 г. $M_W = 9.1$ (отметим сходство всех четырех трасс от эпицентров до станции). В отличие от пиковых ускорений, спектры рассчитаны по короткому начальному участку записи, соответствующему прямой волне Р.

В приведенных спектрах можно выделить две спектральных полосы, принципиально отличающиеся по соотношению амплитуд. Как можно было ожидать, в длиннопериодной части спектра (полосе периодов 20–100 с) соотношение амплитуд приблизительно соответствует магнитудам землетрясений. В частности, длиннопериодные спектральные амплитуды землетрясения Тохоку выше, чем у других записей. В противоположность этому, в высокочастотной полосе 0.2–3 Гц преобладающей оказывается спектральная амплитуда Охотоморского землетрясения. Она в 2–3 раза превосходит соответствующие значения спектров Тохоку, и до 10 раз – Симуширских событий.

Таким образом, записи глубокого Охотоморского землетрясения отличаются от таких же по магнитуде, или даже более сильных землетрясений, существенным смещением спектра колебаний в сторону высоких частот. Это является и причиной повышенных пиковых ускорений от данного глубокого события. Заметим, что диапазон частот в окрестности 1 Гц типичен для макросейсмических проявлений. Таким образом, именно высокочастотный характер спектра был причиной заметных ощущений Охотоморского землетрясения 2013 г. на больших расстояниях. И поскольку глубокие события с магнитудой больше 8 весьма редки, то ощущения, вызванные Охотоморским землетрясением на востоке Европы (расстояния ~7 тыс. км), и в частности в Москве, оказалось достаточно неожиданным.

Расчет и анализ параметров сильных движений грунта (раздел "Пиковые ускорения колебаний грунта" настоящей статьи) выполнялся за счет гранта Российского научного фонда (проект № 14-17-00621).

В заключение мы выражаем искреннюю благодарность А.Д. Завьялову (ИФЗ РАН), Е.П. Семеновой (Сахалинский филиал ГС РАН), Н.А. Гилевой (Байкальский филиал ГС РАН), Л.И. Карпенко (Магаданский филиал ГС РАН), Р.А. Дягилеву (Горный институт УрО РАН, Пермь), Дэвиду Вальду (Геологическая служба США), Пяйви Мянтюниеми (Институт сейсмологии Университета Хельсинки) и жителям Камчатского края за предоставление подробных макросейсмических данных об Охотоморском землетрясении 24 мая 2013 г.

СПИСОК ЛИТЕРАТУРЫ

Авдейко Г.П., Попруженко С.В., Палуева А.А. Тектоническое развитие и вулкано-тектоническое районирование Курило-Камчатской островодужной системы // Геотектоника. 2002. № 4. С. 64–80.

Гусева Е.М., Гусев А.А., Оскорбин Л.С. Пакет программ для цифровой обработки сейсмических записей и его опробование на материале некоторых записей сильных движений // Вулканология и сейсмология. 1989. № 1. С. 35–49.

Ландер А.В. Левина В.И., Фокина Т.А. Регионализация и характеристики сейсмичности сейсмофокальной зоны Курил и Южной Камчатки // Четвертая научно-техническая конференция. Проблемы комплексного геофизического мониторинга Дальнего Востока России. 30 сентября—4 октября 2013 г., г. Петропавловск-Кам-

чатский. http://www.emsd.ru/conf2013lib/rpdf/2seismicity/ Lander_etc_r.pdf

Левина В.И., Ландер А.В., Митюшкина С.В., Чеброва А.Ю. Сейсмичность Камчатского региона // Вулканология и сейсмология. 2013. № 1. С. 195–213.

Левина В.И., Митюшкина С.В., Чеброва А.Ю., Иванова Е.И. Тумрокское-I землетрясение 16 июня 2003 г. с $M_W = 6.9$, $I_0 = 6$ и Тумрокское-II землетрясение 10 июня 2004 г. с $M_W = 6.8$, $I_0 = 5-6$ (Камчатка) // Землетрясения Северной Евразии в 2004 году. Обнинск: ГС РАН, 2010. С. 314–323.

Маловичко А.А., Маловичко Е.А. Макросейсмические проявления в Москве от глубокофокусного землетрясения 24 мая 2013 г. в Охотском море // Совр. методы обработки и интерпретации сейсмологических данных. Матер. Восьмой Междунар. сейсмологической школы. Обнинск: ГС РАН, 2013. С. 3–9.

Маловичко Е.А. Влияние геоморфологических условий и геологических процессов в верхней части разреза на интенсивность макросейсмических проявлений удаленных землетрясений на территории г. Москвы // Совр. методы обработки и интерпретации сейсмологических данных. Матер. Девятой Междунар. сейсмологической школы. Обнинск: ГС РАН, 2014. С. 224–228.

Медведев С.В., Шпонхойер В., Карник В. Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с.

Митюшкина С.В., Раевская А.А., Токарев А.В. и др. Программа для автоматизированной обработки макросейсмической информации: возможности и результаты использования // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Тр. Четвертой научно-технич. конф. Петропавловск-Камчатский. 29 сентября—5 октября 2013 г. Обнинск: ГС РАН, 2013. С. 347—351.

Проект новой российской сейсмической шкалы // Инженерные изыскания. 2011. № 10. С. 62–71.

Надёжка Л.И., Витковский И.Л., Пивоваров С.П., Ефременко М.А., Калинина Э.В. Оценка влияния высокомагнитудных телесейсмических землетрясений на площадки размещения объектов повышенной опасности // Современные методы обработки и интерпретации сейсмологических данных. Матер. Девятой Междунар. сейсмологической школы. Обнинск: ГС РАН, 2014. С. 240–243.

Рогожин Е.А., Завьялов А.Д., Зайцева Н.В. Макросейсмические проявления Охотского землетрясения 24.05.2013 г. на территории г. Москвы // Вопр. инженерной сейсмологии. 2013. № 3. С. 64–77.

Старовойт О.Е., Коломиец М.В., Рыжикова М.И. Анализ макросейсмических данных глубокого землетрясения 24 мая 2013 г. в Охотском море // Совр. методы обработки и интерпретации сейсмологических данных. Матер. Восьмой Междунар. сейсмологической школы. Обнинск: ГС РАН, 2013. С. 10–16.

Старовойт О.Е., Рогожин Е.А., Михайлова Р.С., Чепкунас Л.С. Северная Евразия // Землетрясения Северной Евразии в 2002 году. Обнинск: ГС РАН, 2008. С. 19–44.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 4 2015

Татевосян Р.Э., Косарев Г.Л., Быкова В.В., Мациевский С.А., Уломов И.В., Аптекман Ж.Я., Вакарчук Р.Н. Глубокофокусное землетрясение с $M_W = 8.3$, ошущавшееся на расстоянии 6500 км // Физика Земли. 2014. № 3. С. 154–162.

Токарев А.В., Бахтиарова Г.М., Чеброва А.Ю., Митюшкина С.В. Современный взгляд на устаревшую систему хранения сейсмологических данных КФ ГС РАН // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Тр. Третьей научно-технич. конф. Петропавловск-Камчатский. 9–15 октября 2011 г. Обнинск: ГС РАН, 2011. С. 401–405.

Федотов С.А. Энергетическая классификация курилокамчатских землетрясений и проблема магнитуд. М: Наука, 1972. 115 с.

Чебров В.Н., Дрознин Д.В., Кугаенко Ю.А. и др. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология. 2013а. № 1. С. 18–40.

Чебров В.Н., Кугаенко Ю.А., Викулина С.А. и др., Глубокое Охотоморское землетрясение 24.05.2013 с магнитудой $M_W = 8.3 -$ сильнейшее сейсмическое событие у берегов Камчатки за период детальных сейсмологических наблюдений // Вестн. КРАУНЦ. 20136. № 1. Вып. 21. С. 17–24.

Чеброва А.Ю., Митюшкина С.В., Иванова Е.И., Гусева Е.М. Охотоморское-I землетрясение 5 июля 2008 г. (M_W = 7.7, I = 5) и Охотоморское-II землетрясение 24 ноября 2008 г. (M_W = 7.3, I_0 = 5) // Землетрясения Северной Евразии в 2008 году. Обнинск: ГС РАН, 2014. С. 359–377.

Чубарова О.С., Гусев А.А., Чебров В.Н. Свойства колебаний грунта при Олюторском землетрясении 20.04.2006 и его афтершоках по данным цифровой регистрации // Вулканология и сейсмология. 2010. № 2. С. 57–70.

Шебалин Н.В., Аптикаев Ф.Ф. Развитие шкалы типа MSK // Вычислительная сейсмология. Вып. 34. М.: ГЕОС, 2003. С. 210–253.

Dengler L.A., Dewey J.W. An Intensity Survey of Households Affected by the Northridge, California, Earthquake of January 17, 1994 // Bulletin of the Seismological Society of America. 1998. V. 88. P. 441–462.

Ye L., Lay T., Kanamori H., Koper K.D. Energy Release of the 2013 $M_W = 8.3$ Sea of Okhotsk Earthquake and Deep Slab Stress Heterogeneity // Science. 2013. V. 341. P. 1380–1384.

Lander A.V., Shapiro M.N. Origing of the Kamchatka Subduction Zone // Volcanism and Subduction: The Kamchatka Region, AGU Geophysical Monograph Series. 2007. V. 172. P. 57–64.

Utsu T. Regional differences in absorption of seismic waves in the upper mantle as inferred from abnormal distributions of seismic intensities // J. Fac. Sci. Hokkaido Univ. Jap. 1966. Ser. 7. V. 2. N_{2} 4. P. 359–374.

Wald D.J., Quitoriano V., Wolden B., Hopper M., Dewey J.W. USGS "Did You Feel It?" Internet-based macroseismic intensity maps // Annals of geophysics. 2011. V. 54. № 6. P. 688–707. ЧЕБРОВА и др.

The Impacts of the M_w 8.3 Sea of Okhotsk Earthquake of May 24, 2013 in Kamchatka and Worldwide

A. Yu. Chebrova^{*a*}, V. N. Chebrov^{*a*}, A. A. Gusev^{*a*, *b*}, A. V. Lander^{*c*}, E. M. Guseva^{*a*}, S. V. Mityushkina^{*a*}, and A. A. Raevskaya^{*a*}

^a Kamchatka Branch, Geophysical Service, Russian Academy of Sciences, Petropavlovsk-Kamchatskii, bul'var Piipa 9, 683006 Russia

e-mail: ayuch@emsd.ru

^b Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences,

bul'var Piipa 9, Petropavlovsk-Kamchatskii, 683006 Russia

e-mail: gusev@emsd.ru

^c International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997 Russia

e-mail: land@mitp.ru

Received May 7, 2014

Abstract—A deep-focus magnitude M_w 8.3 earthquake occurred off the Kamchatka Peninsula on May 24, 2013. This was named the "Sea-of-Okhotsk" event. The earthquake has attracted special attention because, among other issues, it was felt uncommonly far from the epicenter, to distances of nearly 10 000 km. The present paper reports its felt effects for the area around the epicenter and worldwide. We quote peak acceleration values at many stations in Kamchatka and worldwide as derived from instrumental recordings at digital seismograph stations in the Russian Far East and from those due to the Global Seismographic Network (GSN). We discuss features that are present in the instrumental records of the Sea-of-Okhotsk earthquake.