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Multiasperity Fault Model and the Nature of Short-Period
Subsources

A. A. Gusev!

Abstract—We suggest to consider the breaking of an asperity, i.e., a small contact patch between
fault walls, as a typical subsource producing an elementary short-period radiation pulse from a source
of a large earthquake. Based on the results of DAs and KosTrRov we propose formulas to describe
amplitudes and spectra of acceleration for a multiasperity fault/source model. The stress drop over an
asperity is determined in several ways; the estimates agree to give the average value of several hundred
bar. Theoretical acceleration spectral shapes for the case of similar asperities agree with the observed
ones, they reproduce such features as lower-frequency f' slope, peak, and high-frequency cutoff. The
statistical stress-drop distribution over the population of asperities, and also the related distribution of
peak accelerations are discussed. These distributions are found to be the power-law ones with exponent
near to 2. This means that acceleration peaks are formed normally by breaking of individual asperities.
We consider small earthquakes as produced by breaking of single asperities, this idea explains the
observed correlation between the upper cutoff frequency of acceleration spectrum and the typical
characteristic frequency of small earthquakes.

Key words: Earthquake source spectrum, asperity, strong ground motion.

1. Introduction

To study the mechanism of short-period (SP) seismic wave generation is
interesting from the general point of view of earthquake source mechanics and is
also important for improved prediction of destructive ground motions. The nature
of short-period wave radiation is not fully understood at present, after many years
of study (e.g., HOUSNER, 1955; HASKELL, 1966; SHEBALIN, 1971). The barrier
model of DAs and AKI1 (1977) in its more definite form (Aki1, 1979) and several
related models (e.g., BOATWRIGHT, 1982; PAPAGEORGIOU and AKI, 1983) assume
that SP radiation does not simply accompany the long-period source movement and
radiation but is generated by a multitude of nonoverlapping small crack-type
subsources isolated from each other by strong barriers. The long-period radiation is
produced due to nonrandom phasing of these subsources.
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This model is not completely acceptable from the tectonophysical point of view:
as geological time goes, slip along a fault normally cumulates, so the supposed
barriers are to be broken in a certain unclear way. From the point of view of
radiation properties, the idea of nonoverlapping subsources is also somewhat
dubious (GUSEV, 1983). A critical discussion of this problem from another point of
view is given in BOATWRIGHT (1987). These problems made us to formulate our
previous statistical model (GUSEv, 1981, 1983) as a purely descriptive one, since the
nature of subsource was not fixed there (but was discussed in some detail). The
subsource spectral shape proposed by GUsgev (1983) implicitly assumed however a
crack-type subsource.

Another way to represent a stochastic source is to introduce some random field
of strength, and/or of initial stress (NUR, 1978; ANDREWS, 1980). An important
result in this respect was obtained through numerical simulation by MiKkumo and
MIYATAKE (1978) who showed that the distribution of strength of fault elements
should be *‘heavy-tailed” to produce more or less realistic rupture histories.

Below we shall discuss the consequences of our assumption (GUSEv, 1986) that
the typical subsource in an earthquake source can be represented mechanically as
the failure of asperity. A similar idea was proposed also by BOATWRIGHT (1987).
Breaking of a single asperity on a stress-free infinite fault was studied by DAs and
KosTrov (1983). In DAs and KosTROV (1986) these results were generalized to the
case of an asperity in the center of a circular crack. Hereinafter these two papers
will be referred to as DK83 and DK86. Note that the model presented here has no
immediate relation to the asperity model of LAY et al. (1982), where a much larger
object is considered as an asperity, and this object is not directly related to the
generation of high-frequency waves. This object can represent however, a group of
high-strength asperities of the kind discussed here. For clarity we shall speak below
about a multiasperity model, which is conceptually close to the “asperity model”
from the Introduction of DK83 and to the “composite asperity model” of
BOATWRIGHT (1987). Several important points below are related to ideas of HANKS
and JOHNSON (1976) and MCGARR (1981), who were the first to realize the close
relation between individual asperities (or stress concentrations) on the fault and the
properties of SP radiation.

2. Breaking of a Single Asperity and Parameters of Related Radiation

In the following section we shall introduce the notion of asperity and shall give
a number of formulas describing its radiation following largely DK83 and DK86.
But at first let us find out why it seems necessary to discuss asperities on nonflat
fault surfaces.

At the source depth of a shallow-focus earthquake elastic deformation produced
by hydrostatic (i.e., lithostatic) load (*“‘compression™) is below 1%. It is known that
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if there is a thin oblate spheroidal cavity in an unloaded elastic medium of aspect
ratio o such that o < 1, this cavity will be closed by hydrostatic load at a com-
pression value close to a. The geological fault can be considered as a contact of
uneven surfaces with some typical mismatch angle f. Extrapolating the results for
a spheroidal cavity it is likely that faults with § > 0.01 keep their walls unclosed down
to depths of 50-100 km. The value f =0.01 (radian) or 0.6°, should be compared
with the typical angles of deviation of actual fault surface from mean flat surface (i.e.,
the typical slope of the surface), which are 1-2° or greater. Therefore one can expect
that the intimate contact of fault walls takes place not only on a small part of the
fault surface. This is reasonable not only at dépths of several km (DK83), but for
shallow-focus earthquakes in general. One can suppose naturally that contact is
realized in isolated, more or less isometric patches-asperities, outside of which the
fault strength is zero (if the filler is fluid) or low (if the filler is plastic gouge).

The fraction of a fault surface covered with strong patches is a very important
parameter in the presented theory, we shall name it the filling factor k. Bracketing
of this parameter is one of the goals of the paper. One can say a priori, however,
that high values of k,as 0.3 or greater would make the whole idea of isolated strong
asperities more or less senseless, so only values of k, below 0.3 are compatible with
our concept of a seismogenic fault.

As noted in DK83, shear breaking of an asperity should be the usual phe-
nomenon when fault walls slip and can be directly relevant to the earthquake source
process. Because of relative isolation, the details of breaking of each asperity weakly
depend on breaking of other asperities. This enables us to begin with the breaking
of a single asperity.

In DK83, the asperity is modelled as a welded circular patch between two
half-spaces with free boundaries and an infinitesimally narrow crack/fault between
them. The asperity is loaded by pure shear relative displacement of the half-spaces,
with the given value of displacement at infinity. Breaking of this asperity produces
body waves (P and S) radiated into the half-spaces. For P and SH-waves (SH being
defined as polarized parallel to the fault) the waveforms are unipolar velocity pulses
(displacement sieps) (see Figure 1). The pulse duration (step rise time) T, is
approximately equal to the breaking time. The pulse area (step amplitude) is
proportional to the integral “‘seismic force of asperity”

Fo= j Aca(x,y) dS = AtS, (n
E

where Ag is the stress drop at a point (x,y) of asperity; X is the asperity surface, with
area S, and element dS, and At is the average Ac over asperity. Note that F; is
independent of the final slip B at the asperity. Neglecting the details of fracturing
and the Doppler effect, one can introduce the variable seismic force of a point
asperity Fy(7) so that Fy(0) =0, F(T,) = Fy(0) = F,. The far-field displacement u
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of P and SH waves is then given by the formula (replace Fy() by Fo() or Fy() to
obtain velocity # or acceleration i):

DPSHE(t —r[cps)
dnpc st

uPSHi(rr) =

(2)

where r is the vector from the source to receiver, r = r|, p is the density, ¢, is P
or S wave velocity, D™5¥ is radiation pattern (see DK83 for details). Note that
D”SH can be represented as D% = DESHRPSH where #75" is the standard
radiation pattern for a dislocation source on X with normal n and slip direction b,
“along”™ At (i.e., b; oc n; At); DES" is the correction factor, of about two on the
average. For SV waves, u(r,r) for some directions is a linear combination of Fy(r)
and the Hilbert transform of Fy(f). The shape of the amplitude spectrum will,
however, be similar for SV and SH-waves.

The breaking time 7, was determined in DK 83 by numerical simulation using a
grid model of a circular asperity with diameter 2R, equal to 11 grid units.

Let

Tymr— 3

VaCs

the simulation in DK83 gave v, =0.65-0.75. It is not clear, however, whether this
estimate can be applied if the asperity is fractured not spontaneously but during the
process of rupture propagation along the fault surface. DAY (1982) carried out the
numerical simulation for an inhomogeneous dynamical source model which in-
cluded three isolated loaded patches. For the first patch which was fractured
spontaneously the rupture propagation velocity was below c¢; the second patch was
fractured faster, and the third one with rupture velocity considerably above cg.
Therefore we shall assume for further estimates v, = 1.35 (equivalent rupture
velocity = 0.79¢, = 1.35¢y).

The most restrictive idealization of DK83 is the assumption of an infinite fault.
In this case the Rayleigh waves generated by the fracture propagate to infinity, and
only the above-mentioned displacement step is radiated as body waves. In DK86
the more realistic case of a circular fault is considered, with a circular asperity in its
center. In this case, the Rayleigh waves are diffracted at the fault boundaries and
are converted into body waves. This leads to changes of wave forms (see case B of
Figure 1): a displacement step is concluded by slow return to zero, forming a pulse
with characteristic duration of about 2R, /c,, where R, is the crack radius and c;, is
the Rayleigh wave velocity. As one can derive from BOATWRIGHT (1987), these
results of DK 86 remain generally applicable to an asymmetrically situated asperity
on a circular fault (case C, see Figure | for minor changes of pulse and spectral
shapes).
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From now on we shall try to obtain formulas to be used in interpretation of real
data. To estimate the numerical factors, we shall use in each case the simplest
arbitrary example function. These functions were chosen carefully, so that the
related inner incompatibility could be considered negligible when compared to other
simplifications of the model.

The first important property of the asperity model is the fact, that the far-field
peak acceleration produced by it is determined mainly by stress drop, and does not
depend on its size. (It depends however on the shape functions of the space-time
history of breaking.) To obtain rough estimates, let us assume that this history and
observation direction are such that the radiated velocity pulse shape is a cosine bell

() = {I —cos(2mt/T), re(O,T).
0 , 1¢(0,7)

Also, let the asperity shape be circular, with seismic force F,=nR2 At. For the
assumed pulse, as one can easily show, Fj .y = Fy(Dmax = 2nF,/T. Assuming T = T,
and substituting Fj .., into the version of (2) for i =a, we obtain for peak

acceleration in SH waves
: nDSHy2\ At
ast, =( - ()

8 pr’

Now let us modify this estimate in order to apply it to the interpretation of
actual observations of peak acceleration. To attain this, we replace at first D5 by
root mean square average,

D =(i J‘ ((DSH)z +|DSI’
87 Jo

where Q is the unit sphere. Our rough estimate of D gave D = 1.16 (D« = 2.6). The
free surface correction factor of two should be also added, and at last we should
account for impedance (cgp) difference between the source and receiver (see GUSEV,
1983). For typical frequencies of 3-10 Hz this correction also nearly doubles the
amplitude. The final formula at v, =135 1s

2) dn)m (5)

Aay = 3.3A17/pr. (6)

HANKS and JOHNSON (1976) obtained an analogous estimate (with a factor of 1)
from general dimensional considerations.

Let us consider now the spectra of radiated waves (see Figure 1). Characteristic
frequencies f, and f, are determined by the displacement step/pulse rise time T, and
by the displacement pulse duration T,:

j:hl' = CBJ{T:L.\ (?}
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where we shall assume further Cz =0.8 which is accurate for a symmetrical
trapezoidal pulse with rise/decay time equal to 20% of its total duration. For the
case A at frequencies f < f,, the amplitude spectra of velocity and acceleration are

u( f) = u(t)|,~ . = DFo/Anpcir
a(f)=u(f) =2nfu( f). (8)

These formulas remain approximately true also for the case B, in the interval
3f. <f </f,/3. Therefore the level of velocity spectrum (and the value of accelera-
tion spectrum at a given frequency) are determined in this frequency range by the
seismic force F, only. For the neighbourhood of frequency f,, let us represent
approximate acceleration spectrum (by analogy with the known Brune’s spectral
shape) as

9)

a(f):(DF“) f

20cyr ) T+ (f1f)™

Here we must fix the value y, of high-frequency slope. For cosine bell velocity pulse
V. = 3, but this guess is misleading because we chose this shape arbitrary to exclude
acceleration jumps; this automatically leads to y,=3. We found no definite
theoretical considerations to fix y, at present; all values between 1.5 and 3.5 seem
more or less probable, and the choice of any value in this range does not change
radically the results below. Based on some experimental spectra (see e.g., FACCIOLI,
1986), we fix 7, =2, and for the peak value of acceleration spectrum we obtain

DFf,

A s = 7 5

(10)

Hence, a( f )., 15 related to Fyf,, or to AtR,; the last conclusion corresponds to
equation (6b) of BOATWRIGHT (1987). Note that on Figures 1 and 3 corners are
drawn instead of smooth peak discussed here.

From the point of view of fault mechanics, an important problem is that of
stress concentration at the asperity. In the model of DK83 the initial conditions are
of zero displacement jump over the asperity, and loading is caused by displacement
at infinity. This assumption leads to an (integrable) singularity of stress at the
boundary of the asperity (and maybe also to the specific “double pincer” fracture
mode). One can suggest however that real asperities can “plastically accommodate”
to the load, so that the stress distribution over the asperity area is considerably
smoother. The same conclusion can be obtained from the analysis of another model
of an asperity, namely an elastic paraboloidal hill pressed on an elastic half-space.
This problem is identical to the well-known Hertz’s problem of the contact of
elastic spheres (GALIN, 1980). For a cohesionless contact, the theory predicts an
ellipsoidal profile of normal stress (similar to the profile of displacement jump for
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a circular crack). One can assume that if dry friction and shear load are added, the
arising shear stress will have a qualitatively similar profile (stress increasing from
the boundary to the center and not otherwise). Detailed analysis of this case is
somewhat difficult: one should explicitly take into account the history of loading.
Note also that in this context, the asperity model of DK83 can be compared with
a “flat-top hill with sheer slopes”.
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Figure 2
Wave forms of waves radiated supposedly by breaking of asperity. Above—for asperity in the deeper
part of the source of the San-Fernando earthquake of 1971. Single and double integrated accelerograms
are plotted for stations Pakoima and Lake-Hughes-4 (HEATON and HELMBERGER, 1979). Below—same
plots for the Tokachi earthquake of 1968, for station Muroran (pulse No. 2) (Morl and SHIMAZAKI,
1984). In all cases one can see unipolar velocity pulse and displacement step (more or less deformed
during stabilized double integration).
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Table 1

Parameters of asperities calculated from wave forms of Fig. 2!

Station, r u T, log F, R, At

Event component km cm s dyne km bar
San-Fernando, Pacoima, up 14 5% 15 19.93 2.6 400
1971 Lake Hughes 4, up 25 2 1.0 18.94 1.7 90
Tokachi-oki, Muroran, SH 160 9 0.9 20.41 2.1 1800°

1968

! Calculation was carried out using (2) and (3), taking into account free surface factor of 2;
¢, =3.5km/s,p =2.7 glem®, D = 1.16, v = 1.0 for the San-Fernando and v, = 1.35 for the Tokachi event.

2 u, and consequently F, and At are possibly exaggerated because of local topography. Note that
both estimates for the San-Fernando event correspond to the same asperity.

' Anomalously powerful pulse.

Now we present two examples of records where radiation may be assumed to be
due to single breaking asperities. A distinctive feature of such a record is a unipolar
velocity pulse. Both examples were found in integrated accelerograms of large earth-
quakes. A velocity pulse can be clearly identified in such a record in two cases: either
it should be one of only a few pulses, or it should be anomalously strong. Both cases
are observed in examples. The first example (see Figure 2) was mentioned by HANKS
and JOHNSON (1976) (reproduced from HEATON and HELMBERGER, 1979). Another
probable pulse due to an asperity was found by MorI and SHIMAZAKI (1984) who
ascribed it to a crack subsource. Our interpretation seems equally well founded. The
estimates of parameters F,,, R, and At for both examples are given in Table 1.

3. Elastic Waves From a Multiasperity Source

As one can see from the preceding section the main velocity or acceleration pulse
from a single breaking asperity is determined by its “local” properties (mainly by
stress drop and size). Hence we can assume that in case of several adjacent breaking
asperities as a first approximation we can calculate SP radiation separately for each
asperity and then add the results.

Let us consider a fault model consisting of a crack with many small contact patches
(asperities). Macroscopically such a model is equivalent to the usual fault model with
cohesion. It can be specified by, e.g., cohesive stress (or static friction or strength),
6. and residual friction o,. These macroscopic parameters are in fact determined
by the properties and configuration of the mentioned contact patches. The same is
true with respect to macroscopic fracture criterion. As for short-period radiation
accompanying fracture, it cannot be correctly described at this “‘macro”-level: this
is a fully “microscopic” phenomenon.
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Consider now an earthquake source situated on such a fault. Let it “‘macroscop-
ically” be a shear crack (e.g., the circular crack of radius R, with constant stress
drop Acg). During the formation of the crack its tip (i.e., rupture front) propagates
“*macroscopically smoothly”, but “microscopically” this rupture propagation is a
wave of breaking of asperities. We shall name such source model the multiasperity
model.

Macroscopic stress drop Ac can be determined in this model only for a
considerably large region of a fault surface containing many asperities. Constancy
of Ae over the source area means that the mean Ag is the same for any such region.
The relation between macroscopic Ag and average stress drop At over an asperity
for a given source is determined from a condition of correspondence of forces
between microscopic and macroscopic representations. For similar asperities this
gives

SAc =Y F,, = NAtS, (11)

where § is the source area, N is the number of asperities over it, and At and S, can
be considered as average values over the set of asperities.
Using the filling factor k, introduced above we can represent N as

N = k;S/S, = k,R?/R2. (12)

The last equality is valid for a circular source of radius R, and for circular asperities
of identical shape; we shall base our estimates on this case. From (11) and (12) we
can now relate A and At simply as

At = Ac /k;. (13)

This intuitively obvious relation agrees well with the strict results of BOATWRIGHT
(1987) who derived the formula for the average seismic moment created by some
definite asperity (be it a single one or one among others) situated at a random place
over a circular crack which in our notation is

1 16
Moy =— RR,At =2 R,F, (14)
7 T

where R, is the crack radius and M, is the seismic moment produced by a single
asperity failure. Expressing the total seismic moment M, of the source as
M, = NM,, and as M, = (16/7)R> Ac one can easily derive (13). We shall need also
below the average distance between asperities which we shall determine as

d =(S/N)"2 = (n/k)"R,. (15)
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Let us assume that breaking of each asperity begins at a random moment of time.
Then for a source in which N asperities are broken, the SP acceleration amplitude
spectrum will be

a(f) =a,(fIN'? (16)

where a,(f) is the average spectrum for a single asperity.

Note that after the rupture front has gone and has “freed” a given point of a
fault, slip of fault walls can progress either smoothly or as stick-slip (with temporal
interlocking). In the second case, several SP pulses can be generated by the same
asperity before healing. If this phenomenon is real, the estimate (16) is incorrect,
and a(f) is proportional not to S but to ST,, where T, is the duration of the
earthquake source process. Assuming similitude as is often done (see e.g., GUSEV,
1983) these two cases lead to either a(f) oc MY? (when (16) is valid) or
a(f) oc M} (in the second case). In (GUSEV, 1983) the second case was assumed,
and the postulate of constant “effective” Ao of HANKS and McGUIRE (1981)
implicitly assumes the first case. Note that empirical SP spectral trends compiled
by Gusev (1983) corresponded to a(f) o« M3?%; but more recent data of
KovyaMA and ZHENG (1985) and HoustoN and KANAMORI (1986) lead to
a(f) oc M{y** 47 Therefore observational data are not fully decisive here. Impor-
tant in this respect are the results of SPubpiCH and CRANSWICK (1984) who by
means of a phased array managed to track the movement of the “bright”” SP
radiator at the propagating rupture front. Taking this into account we are inclined
here to the first variant (asperity radiates once) and we relate the difference of the
observed exponent from 1/3 to some secondary factors. This point cannot, however,
be considered as fully settled.

Let us consider now the general structure of the source radiation spectrum in the
multiasperity model. As in GUSEV (1983) we shall assume that the “macroscopic”
crack radiates a smooth unipolar displacement pulse. The spectrum of this pulse has
a corner frequency f, and high-frequency asymptote of the type /=7 with y =2.5-
3.5. The SP radiation from breaking asperities is superposed onto this smooth pulse.
Note that in the present model, the totai SP radiation energy increases, with
increasing source size, in proportion to its area S (and not to ST, as in GUSEV,
1983). Thus, SP radiation energy, if treated at the ‘“‘macroscopic™ level, can be
included into fracture energy, or in “quasi-thermal” losses (KosTROV, 1975).

To present a wide-band radiation spectrum most clearly, following GUSEvV
(1983), we introduce the modified source spectrum

K(f)="My(f) (17

where the more common source spectrum M( f) is the Fourier transform of M(1),
i.e., the seismic moment rate of the equivalent point double dipole. The shape of
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K( f) immediately defines an acceleration spectrum of S-waves

dnpcir

This is a slightly modified standard result for a homogeneous infinite medium.
A is generally the full-vector S-wave radiation pattern for a given ray, but to obtain
average results for all directions we can consider # as spherical rms value. Same is
true for D and D« values below. As usually we neglect P-wave contribution to
accelerations.

fcs fee fer fai far
| |

log
K(f)

-1 0 i logf

Figure 3
Schematic scaling laws of source spectra K(f) =f>M,(f) for multiasperity source model. Similitude is
assumed for the main “macroscopic” source/crack and for its rupture history: Ac = const, f, o« My '3,
The relative f, values presented are: f,, = 1, f, =0.316 and f_, = 0.1; they correspond to M, =1, 31.6 and
1000. The asperity number N oc § oo M2*. Some definite values of At and k, are assumed, and two
different values of f, are fixed giving two scaling laws. The spectra of single-asperity sources are marked
by N =1, they are fully similar. At given f,, K(/)n. = K(f,) grows as N'? because of incoherency,
leading to K(f),.x ¢ M. At given M, and f,, K(f ).« is independent of f,. Low-frequency (coherent
“macroscopic”) spectral shape assumedly has f~%% asymptote. Coherent and incoherent parts of the
spectrum are schematically connected by a wavy line.
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Several schematic K( /') spectra are plotted in Figure 3, including that of a small
earthquake which within the frames of our fault model should be compared with
the breaking of a single asperity. As is clearly seen from Figure 3, the proposed
model leads to spectral scaling law with no similitude, and the kind of violation of
it agrees with the revised B model of AKI (1972) and with spectral shapes suggested
in GUSEV (1983).

Combining (16) and (18) with (8) or (9) one can easily estimate K(f) for the
multiasperity model with similar asperities. For the intermediate frequency /' slope
of K(f) below f, we obtain

K(f) = 0.5DxcskR.R, Atf. (19)

For the neighbourhood of f,, i.e., near the peak of K(f'), assuming y, =2 and
having determined from (4) and (7)

R, =v,csCp/2f, (20)
we obtain

K(f)max = K(f,) = 0.125Dxc 3k V2Cyv,R, At. (1)

Note that (19) implies the general relation K(f) oc R, At but (21) implies another
relation for the spectral peak, namely K(f )., o¢ At.

4. Statistical Properties of Asperity Stress Drop and the Structure of Accelerograms

In this section we shall derive an estimate of the asperity stress drop At based on
peak acceleration data. We shall assume that the peak value of acceleration is
produced by a pulse from some definite asperity and not as a fluctuation of a certain
random sum. This assumption will be justified below. In these and all the further
calculations we shall use the same set of parameters: D = 1.16, Dx =2.6, Cz = 0.8,
v, =135 k,=0.1, p = 2.7 g/em®, cg = 3.5 km/s, and assume the typical Ag value to
be 30 bars. The choice of k, value is mostly arbitrary except that the above-men-
tioned conditions k, < 0.3 was taken into account. The value k, = 0.1 seemed to be
a reasonable starting value. The realistic range of k, will be estimated in the
concluding part of the paper. Also we shall assume the £, value to be 2.4 Hz based
on observations described below, through (20) it entails R, = 0.8 km. The values of
k; and Ac¢ provide us, through (13), with the first empirical estimate of At:
At, = 300 bar.

The multitude of asperities of a fault or faults can be considered as a statistical
ensemble with distribution function

P(At’ > At, R! > R,) = F(At, R,).
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Only At distribution will be discussed below. Remember that At determines the
peak acceleration of a pulse generated by the breaking of a single asperity.
“Heavy tails” of strength distributions for relatively successful models of real
faults (e.g., MIKUMO and MIYATAKE, 1978) and the specific appearance of ac-
celerograms recorded in the vicinity of faults suggest a powerlaw (not Gaussian or
lognormal) distribution for Ar:

P(At’ > A1) = (At/At,,,) ™ (22)

We shall need the expression for the median Aty o5 of a maximum value in a
sample of size N, for this distribution. Calculation gives

AT N, 0.5/ ATmin = (1 — 27 1/No) =1 x5 (1.45N,) /2, (23)

Mean value and variance for (22) are

(At) = (L) At (24)

o —1

o
(At —<A1))*) = (m)

(Atgin)®. (25)

We shall apply these results to the interpretation of peak acceleration data
obtained near a fault/source. To start with, we shall assume that at a receiver
point at the Earth’s surface, at distance r, from the surface of a supposedly
vertical fault, one can determine the peak acceleration a,,, taking into account
only the contribution of the nearest part of the fault surface because the radiation
from farther points of the source will not produce a maximum pulse. This means
that the size or the magnitude dependence of a,,,, (at given ry) exists for small
shocks only, such that their source surface cannot cover this nearest part of the
fault and saturates for the size and M values above some critical value (cf,
CAMPBELL, 1981). This value (M.) can be determined from the area of the
mentioned fault region. To obtain numerical estimates, we shall consider this
region to be the lower half of a vertical square with side 2r,, and with its center
on the Earth’s surface at the point of the fault which is the nearest to the receiver.
The area of this region is 2ri. The mean distance from a random point of this
region to the receiver is 7 & 1.2 r,.

Let us fix ry to be 10 km; then the assumed area of the nearest region of the
fault surface is S =200 km? which corresponds to M, ~ 6.3. For lower magni-
tudes, median peak acceleration (which is proportional to Ar,,,, see (6)) will
decrease with decreasing M because the number N, = N of asperities in (23) is
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Figure 4
Empirical relations between peak horizontal acceleration a,,, on the rock and magnitude, and
theoretical broken lines for distance r,=10km from a fault or source surface, for power law At
distributions with exponent « = 1.2 (recommended) and 3. Empirical plots are drawn in their intervals
of applicability: 1—after DoNOVAN and BORNSTEIN (1978), 2—after CAMPBELL (1981), both | and
2—for a distance of 10 km from the nearest point of the vertical projection of a fault onto the Earth’s
surface; 3—after (GoTo er al., 1984) for epicentral areas; 4—data range of (FAcciori, 1986) for a
hypocentral distance of 10 km.

getting lower. As N oc S, log @, oc & log S, and also log S ~ M + const., so that
we can relate a,,,, to M at M < M. On Figure 4 empirical relations (a,,,,, M) are
plotted for ry = 10 km, each in its interval of validity, and their approximation by
the “theoretical” broken lines

1

-(M - M loga, M=M_
log amax(M) ={g ( cr) + loga (26)
log a, M=z=M,

drawn for & = 1, 2 and 3. Obviously o = 2 is a rough estimate; but values « = 1 and
o =3 are clearly less preferable. The reasonable agreement between empirical data
and theoretical prediction supports our theory. The estimated a level can be used to
find out an estimate of At employing (6) and assuming the mentioned correspon-
dence between peak acceleration and the strongest asperity. Inverting (6) for a
random location of this asperity we obtain the stress drop estimate

Aty = 0.30p7 . (27)
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To obtain average At we assume that At,,, corresponds to Aty ,s then (23) and

(24) give
o nR2 e
= a Aty
== (1.45k,(2r3)) Ty (28)

Assuming here (A1), R, and k, to be constant, one can derive from (27) and (28)

max = S(@)r§/ 1. (29)

This means that when a = 2, the average peak acceleration near the middle part of
an elongated source does not depend on the fault distance (up to distances which
are near to the fault width). This conclusion seems to be supported by macroseismic
data providing an independent confirmation of our estimate « = 2. Now assuming
a=2, F=12r,=12km and a4 =500 cm/s?>, we obtain the second experimental
estimate of At: At, = (A1) = 260 bar.

Now we proceed to the problem of acceleration peaks, which is important in
particular because there is a widely used representation of an accelerogram as a
quasistationary Gaussian process. We shall begin with a general case. Consider a
rectangular L x W source with a rupture propagating along its longer side L at the
velocity v = v,cg so that the total rupture time is T, = L/v. Then the number of
asperities broken during a time interval of duration T, is

NT, 2Ky W 4kp W)
metioe o S A, S (30)
re ﬂvaRa 1"".1"'.a(:'BC.S'
When m < 1, pulses do not overlap, at least near the source, and the accelerogram
appearance will be specific. As the epicentral distance increases, scattering and
multipathing will normalize an accelerogram making it look more like a Gaussian

process. The value m =1 corresponds to the critical source width

v2Cyes
Wcr——"—%ﬂsfa- (31)
At reasonable v, = 0.6, W, =~ 30 km. Hence, multiple overlapping of pulses can take
place for great earthquakes only.

Even in this case, however, the accelerogram will not be near to the Gaussian
process, if @ = 2. As one can see from (25), when « < 2, the distribution (22) has no
finite variance. Hence, even in the case of multiple overlapping pulses the main
contribution to the peak amplitude will come from a certain single asperity. This
conclusion justifies our previous assumptions. One can say somewhat exaggeratedly
that each positive or negative swing on an accelerogram corresponds to some
individual asperity. The results presented in this section can obviously be used for
accelerogram synthesis.
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5. Statistical Properties of Asperity Stress Drop and Barriers on a Fault

There is another, theoretical way to derive the At distribution if one employs the
ideas of FUKAO and FURUMOTO (1985). They believe (we shall drop some important
but irrelevant details) that an earthquake source grows in approximately self-similar
steps or stages, so that its current size takes the sequencial values of a geometric series
Lo, hLo, kL, . ... At each stage the barrier situated along the instant source
perimeter is broken. This occurs in a mode which is close to critical, with a large
probability of stopping. Linear barriers of different strengths form on a fault surface
a hierarchical system of grids with different cell sizes so that the larger the cell size
the stronger are the constituent linear barriers. At each definite stage of its growth
the source occupies one (or several) cell of the corresponding hierarchical range.

We shall assume that barriers of this model are in fact chains of strong asperities
situated at distance d from each other. Consider some definite region of fault
surface of area S*. The total length of grid sides for a grid with a square cell of size
q can be determined as (number of cells) x (cell half-perimeter) giving (S*/
q?) - 2¢ =25*/q. Then the number of asperities in this grid is N*(q) = 25*/qd.
Specifying our initial assumption, let the average At of these asperities (Atg) be
proportional to ¢, then

N*(At,) oc A5, (32)

In order to relate ¢ to Az, let us consider the known equilibrium relation for a
crack with a finite edge zone (Barenblatt-Dugdale model):

Ac, ~ (R,/a)"? Ac (33)

where Ag is the stress drop over the area of a circular crack of the radius R,, and
Ag, is (cohesion minus friction) over the ring-like edge zone (cohesion zone) of
width a <€ R,. To derive a “microscopic version” of this criterion, let us take into
account the chain interval of d, and let the distance between “rows of asperities”,
also equal to d, correspond to the cohesion zone width a. The condition of
correspondence of forces then gives Ag,d* = At,S, = A1k, d* so that the criterion
for breaking of a link of asperity chain becomes

Aty = (R,/d)'*(Ac k). (34)

We shall assume that the barrier fails when this criterion is satisfied for average Ar,
of the chain elements. Then assuming that (34) relates the cell size of barrier grid
g =~ 2R, to the At, value of barriers in this grid we find out that # in (32) is equal
to 1/2. Hence for probabilities of different Az, values we obtain

P(At,) oc Aty 2
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Remember now that Ar, values and g values form a geometrical series. Then

1 1 1 1 1
4 — R ——— . = — —_— _2'
P(At;, = At,) oC tf,+h t§+h2 T§+ = P (l ”h)oc Az, (35)

We cannot of course expect that all strong asperities with some definite At
belong to barriers-chains. It is sufficient to suppose that the fraction of asperities
with given At which belong to barriers is independent of Az. Then (35) can be
directly compared with (22), and we obtain the additional support to our assump-
tion of a power-law on distribution of At with « =2 (see eq. (22)).

We assumed implicitly that Ao is constant for each stage of the source growth.
This is the consequence of our fault model and also agrees with observed general
independence of Ag on L for real earthquake sources of different sizes which
according to ideas of FUKAO and FURUMOTO (1985) can be considered as certain
“frozen” stages of growth of larger sources.

Now we shall construct an estimate of average At based on presented consider-
ations. Let us assume that the distribution (35) is also valid for a set of N, asperities
constituting the part of the perimetric barrier which is near to failure (or is broken
in an almost critical mode). Assume this part to be half of the perimeter. For a
circular source, N, = nR,/d. For the average of N, values of Az, (denote it At,),
(34) is valid. For the strongest of N, asperities taking into account (23) and (24),
the median At is

At,, =%Ar,,(l.45 Np)”z. (36)
The similar formula

. - % (AT)(1.45 N)'? (37

relates A1y, to {(At) (i.e., the average At for the whole source), if we make a rather
likely assumption that the strongest of N asperities is situated on the perimeter.
Combining these results, we obtain

{At) = At,(N,/N)'"2 = A [k, (38)

This coincides with (13). Thus we have not obtained any new estimate of At; we
have demonstrated however the lack of inner contradictions of our model in this
respect.

The use of static crack-tip models in this section and its correspondence with a
multiasperity model can rise a question on the general relation between the
presented multiasperity model and the crack-tip movement models of SP seismic
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energy radiation, such as that of MADARIAGA (1983). These models are logically
different. In the crack-tip movement model, the SP power is produced by variations
of crack-tip velocity, which is here a well-defined parameter. In our model, the
crack-tip is seen only macroscopically and it disintegrates at close view. Its movement
is a movement of a signal for asperities to break. Each asperity breaks autonomously,
and SP energy is therefore largely independent of (macroscopic) crack-tip velocity
at all, moreover of its local variations which are ill-defined in this model.

6. Empirical Source Spectra and the Multiasperity Model

We shall compare now the empirical K( f) functions with those expected from
our model (Figure 3). In order to find empirical K( /) we used average horizontal
acceleration spectra for large earthquakes of “Western USA” region (WUSA) and
of Japan, and also three anomalous acceleration spectra: for the great Peruvian
earthquakes of 1966 and 1970 recorded in Lima (CLouD and PEREZ, 1971) with
unusually high amplitudes, and of low-amplitude record of the Ust-Kamchatsk
earthquake of 1971 (SHTEINBERG et al., 1975).

Functions K( f) were calculated in the following way. For individual records,
the Fourier amplitude spectra of the two horizontal channels were averaged and
smoothed, then they were reduced to r =50 km using the attenuation function

r~' exp( —nfr/csQ(f)), with

_ Qu(fIf)°% > 1o
oAf) = {QO, f<fo (39)

where Q, =314, f, =1 Hz and ¢z =4.3 km/s.

Average regional spectra of horizontal acceleration for a rock site were also
determined for r = 50 km. For WUSA, we used data of TRIFUNAC and LEE (1985)
for M, = 5.7 and 6.6; for Japan—data of GoTo er al. (1984), for M,,,, = 7.5. In
the last case, a(f) was determined from published parameters a,(f) and ,(f)
using the formula a(f) =e =2.72/2 a,(nt,)** derived analytically by ourselves.

Converting of a( /) for r = 50 km to K(f) was carried out in the uniform way
assuming in (18) that empirical a(f) corresponds to one half the total spectral
energy of S waves, taking into account also a free surface factor of two and the
average radiation pattern of (0.4)°°. Absorption was corrected using (39) with
0, =160 and f; = 1.8 Hz. Medium parameters were those of the average crust as
given in Sect. 4 above.

The results are presented in Figure 5. Low-frequency branches of K( f) curves
(below f,) were plotted according to the w ~2 spectral model with

log f, = —1/3(log M, — 23.32). (40)
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Figure 5
Empirical K( /) spectra. Low-frequency parts are constructed using M, and f., high-frequency parts—
from acceleration spectra, control points at 0.05 Hz—from M,. Triangles are the estimates of f,( f,..)s
quadrangles denote the range of typical corner frequencies of small earthquakes in the corresponding
regions. From the top to the bottom: spectra of the Peruvian shocks of 1966 and 1970 (log M, =28.3
and 28) recorded in Lima; average spectrum of log M, = 27.5 (M, = 7.5) shock in Japan; spectrum of
the Ust-Kamchatsk earthquake of Dec. 15, 1971, log M, =27.9; average spectra for WUSA, for
log M, =26 and 24.5 (M, = 6.6 and 5.7), in two versions: initial (solid line) and reduced to homoge-
neous crust (zigzag line). The dotted line denotes less reliable parts of spectra determined by interpola-

tion. Thin lines with angular peaks give upper theoretical limit for the Peruvian shocks.
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The spectral levels at /= 0.05 Hz were estimated from M, magnitude using the
empirical relation

log K(0.05) = M, + 16.74. (41)

The values of M, and M, for individual events are from (PURCARU and BERCK-
HEMER (1983); for the average spectra, we use log M,=24.5 for M, =5.7,
log My=26and M, =6.5for M, = 6.6;log M,=27.5and M, =7.4for M,,,, =1.5.

When comparing the empirical spectra of Figure 5 with theoretical ones two
biasing factors should be kept in mind. Firstly, acceleration spectra (18) in the
frequency range of 1-10 Hz underestimate empirical K( f) (about twice) because of
the impedance difference between the average crust and the medium immediately
beneath a receiver as was noted above. Secondly, the sources of events of M = 7.5
or greater in island arcs are situated mainly in the mantle, not in the crust, and the
mantle p and u values are normally used in inversion of M,. We however used the
crustal medium parameters when a( /') was converted to K( /') (for uniformity). The
corresponding correction for high-frequency branches of observed K(f) will in-
crease them (about twice) and will practically compensate for the first biasing effect
for larger events. Therefore, correction for the first biasing effect was introduced for
WUSA spectra only.

One can see from Figure 5 that after this correction the average K( /') spectra for
log M, =24.5, 26 and 27.5 all have the slope of about 1 at the left (low-frequency)
side of the spectral peak, in agreement with the predictions of the multiasperity model
(see Figure 3). Individual spectra demonstrate large dispersion. The spectrum of the
Ust-Kamchatsk earthquake at | Hz is 0.5 log unit below the average Japanese
spectrum for the same M,. Its spectral shape is somewhat different from the
predictions of the multiasperity model with similar asperities. In this and some other
cases a rather wide distribution of asperity sizes can be hypothesized.

The Peruvian spectra, if taken at face value, are above the average Japanese
spectrum for the same M, by 1-1.2 log units. Thin lines in Figure 5 show the
hypothetical upper limit of spectrum for a shock of M,=7.7 (two variants
correspond to B and C cases of Figure 1). One can see that the expected spectral
shape for f, =11 Hz is in good agreement with the observed one but its level is
about 0.8 log units higher. We believe that the shape of Lima records reflects the
real picture, but their level is exaggerated because of (1) directivity of radiation
(both sources are situated north of Lima and ruptured in the southern direction and
(2) hypothetical local focusing or amplification of radiation. Macroseismic intensity
in 1970 at many points of the Peruvian shore, at source distances of 30-50 km, was
no more than 89 MM which is a usual value and obviously disagrees with the
spectral level of Lima.

We also marked in Figure 5 the upper cutoff frequencies of K(f) spectra ( f,
after GUSEV (1981; 1983) or f,.., after HANKsS (1982)). As noted in Gusgv (1983),
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the characteristic size of fault heterogeneities is regionally specific; this is repre-
sented in acceleration spectra as f, variation. For the data of Figure 5, the range of
/> is from 1.8 to 13 Hz. In GUSEV (1983) we noted also that there is a correlation
between f; and the typical small earthquake size as revealed in its corner-frequency
Jfuman- The ranges of the typical f., values of WUSA and Japan (from published
data) and for the focal region of the Ust-Kamchatsk earthquake (our data) are
marked in Figure 5. One can see that the correlation between f, and f,.., seems
rather probable. This correlation makes our idea that small earthquakes are related
to breaking of a single asperity more likely.

Generally speaking, K( /') spectra constructed from accelerograms are in reason-
able qualitative agreement with the multiasperity model. In this connection we
should mention that HousToN and KANAMORI (1986) presented source spectra
derived from teleseismic P-waves; corresponding high-frequency K(f) levels are
markedly lower than the average spectra of Figure 5 and do not agree with the
spectral trend 1! for K(f) (or f~' for My( f)) at frequencies of 0.2-2 Hz. We believe
that this difference is produced by some technical problems. One can compare the
source spectrum of the San Fernando earthquake of 1971 according to Figure 8
of HousToN and KANAMORI (1986) who used teleseismic P data and obtained
K (1 Hz) =1-10**dyne - cm - s~ 2, and according to Figure 3 of PAPAGEORGIOU
and AKI (1985) who used near-field accelerogram data and obtained K (1 Hz) =
5-10** dyne - cm - s 2, If this difference of 5 times is attributed to underestimation of
t*, one should increase ¢* from 0.7 to 1.2 s (at 1 Hz). But we do not know the real
causes of this difference. We decided to reject teleseismic spectral estimates consid-
ering them less reliable at present.

Now we can use empirical spectral levels to determine At through inversion of
formulas (19) and (21), From Figure 5, for M, = 10, the corrected log K(f =
0.63 Hz) = 24.30; and log K( f)max = 24.52 at the frequency f,..x = 2.4 Hz. There
must be some size distribution of real asperities leading to some flattening of the
theoretical spectral peak. We shall neglect this and suppose that f, = f,..., and
that (21) can be directly used for interpretation; this can lead to some underestima-
tion of Ar. For a circular source with M,=10% and constant A¢ = 30 bar,
R, = 11.4 km; with all other parameters already fixed, this gives A7y =250 bar from
K(0.63) using (19) and At, =210 bar from K( f,) using (21). Of these two values,
the second one is somewhat lower as was expected.

7. Discussion

The proposed multiasperity fault model was employed above to obtain several
estimates of the average stress drop over asperity area:

At, =300 bar—from global Ac and assumed k, value
At, = 260 bar—from near-field peak acceleration
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Aty = 250 bar—from the level of LF-slope of acceleration spectrum
Az, =210 bar—from the peak value of acceleration spectrum.

Though the reasonable agreement is obvious, one should not forget that
important dimensionless parameters k, and v, were fixed in an almost a priori
manner. Note that in all three formulas for At,_, (not given explicitly for At; and
At,) these two parameters appear in the same combination k% v ', whereas in
the formula for Ar, we have k;'v). Therefore the obtained agreement will not
worsen if k. and v, values will change in a coordinated manner, so as not to change
the combination kv, * which should be kept equal to 0.055 (=0.1/1.35%). The
reasonable interval for v, is 0.6-1.5, this gives the interval for k. to be 0.02-0.125
and for At-1500-250 bar. Both intervals seem marginally acceptable but so high
values of average At as 1500 bars and so low values of k, as 0.02 seem to be not
very probable. Therefore we give: k, = 0.04-0.125, v, = 0.85-1.5, At = 750-250 bar
and R, = 0.5-0.9 km as our final estimates.

Several other points are worth being underlined. The agreement is observed
between the estimates of asperity stress drop distribution based on (@, M)
relation for low M, on approximate constancy of a,,,, in the epicentral region and
on the source dynamics considerations. Real spectra K( /') include such features as
an interval of /' growth, peak and upper cutoff frequency f; ( f,.,) Which can be
expected from the multiasperity model with similar asperities.

If our conclusion on power-law distribution of At (and consequently of ac-
celerogram peaks) will be confirmed, this will mean that the accelerogram descrip-
tion by the quasi-stationary Gaussian process is not fully adequate. Instead one can
describe and also simulate an accelerogram by superposition of relatively rare pulses
from individual asperities.

We did not discuss in any detail an important problem of size distribution of
asperities, but some difference between Ar; and At,, the shape of the Ust-Kam-
chatsk spectrum and the difference between our average R, estimate and R, values
of Table 1 show that this problem is important; it needs separate research. But the
presence of more or less clearly expressed peak in many accelerogram spectra
suggests that the present version of the model, with constant R,, can be thought to
be the reasonable first approximation. In general, we believe that the multiasperity
model can provide a realistic mechanical model of the fine structure of a fault and
also gives us a successful theoretical model of short-period radiation from earth-
quake sources.

8. Conclusion

1. Breaking of a small (size under 1 km) asperity on an earthquake-generating
fault is supposed to be a typical subsource producing a pulse of short-period elastic
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waves from a source of a large earthquake and also represents the main component
of a source of a small earthquake.

2. Based mainly on the results of DAs and KosTrov (1983; 1986) a simple
theory is proposed for radiation from a single breaking asperity and from the
aggregate of asperities broken during rupture propagation. A new notion of
“seismic force™ Fj is introduced as the main integral parameter characterizing small
breaking asperity.

3. The derived theory provides several ways to determine typical stress drop Az
over the asperity area. All estimates agree and give the tentative value of At = 250—
750 bar.

4. More or less localized peak and an interval of /! slope on the low-frequency
side of it which are observed in real acceleration spectra are in agreement with the
proposed multiasperity model. The position of the peak is determined by the
asperity size, and its amplitude mainly by Ar, that is, by the asperity strength.

5. The fracture criterion for Barenblatt-Dugdale crack model is modified for a
fault with asperities. This criterion can be combined with the hypothesis of
stochastic self-similarity of source growth to derive At distribution of asperities. The
distribution is the power-law one with exponent 2, it agrees well with peak
acceleration data for the vicinity of a fault.

6. In order to describe and simulate an accelerogram, one can represent it as a
sum of weakly overlapping pulses from individual asperities.
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