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ABSTRACT

Abubakirov, LR. and Gusev, A.A., 1990. Estimation of scattering properties of lithosphere of Kamchatka based on
Monte-Carlo simulation of record envelope of a near earthquake. Phys. Earth Planet. Inter., 64: 52-67.

Several models which describe the intensity of single and multiply scattered waves radiated by an instant point source into
a medium with uniformly dispersed scatterers and uniform absorption are reviewed. The model of multiple low-angle
scattering (MLAS) is then considered and we show that in the realistic case of dominantly forward scattering one can employ
the model to determine the mean free path / from pulse broadening of scattered waves. This fast (o r®) pulse broadening
leads to r~? amplitude decay and can explain known fast-amplitude decay of short-range magnitude calibration curves and of
peak acceleration attenuation laws.

Since analytical theory is lacking for an important case of scattered body waves at source distances around r=/, we
employ the previously developed technique of Monte-Carlo simulation of a scattered wavefield to obtain a set of theoretical
formulae and master curves. These enable us to estimate mean free path / in two independent ways: from intensity ratio of
direct and scattered waves (/,) and from pulse duration or retardation (/). In both cases, the estimates must depend only
weakly on errors of @ determination. We applied the developed theory to the interpretation of records of earthquakes near
Kamchatka recorded by frequency selecting (*ChlISS") stations. For Shipunsky (SPN) station in the 1.5-6.0 Hz frequency
range the estimates are /, = 150 km, [ = 110 km. In the 6-25 Hz range, /, is decreasing, roughly as f~%,

We could expect that improved theoretical coda shapes will resemble the observed ones, leading to accurate intrinsic Q
estimates. This is not the case however, and our Q estimates depend in fact on the choice of lapse time window. This indicates
that uniform medium models are insufficient for interpretation. We could demonstrate directly the depth dependence of /

based on [ estimates.

1. Introduction

The determination of absorptive and scattering
properties of the medium based on scattered waves
(first of all, coda) has become a routine procedure
in recent years (e.g. Rautian et al,, 1981; Jin et al.,
1985; Gao et al., 1988; Sato, 1989, among others).
The theoretical foundations of this approach can-
not be considered, however, as absolutely definite.
Usually the interpretation is carried out based on
the models of single or multiple isotropic scatter-
ing in a medium with uniform distribution of
random scatterers and uniform absorption. Al-
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most all these assumptions can be (and more or
less are) violated in nature. Three questions can be
raised immediately. First, are the models em-
ployed fully adequate, given the assumptions on
the medium? Secondly, how strong are real devia-
tions from these assumptions? Thirdly, how can
large errors be inflicted by these deviations in the
estimates of medium properties? We shall address
several aspects of these problems in the present
paper.

The two problems of this kind to be discussed
here will be the effects of multiplicity of scattering
and of anisotropy of scattering indicatrix. Only



when we take into account the multiplicity in an
accurate way can we guarantee that no systematic
errors are produced by inadequate approximate
formulae; this can improve estimates of mean free
path based on ‘direct’ wave to coda intensity ratio.
As for anisotropy of scattering, it reveals itself in
the shape of the peak of scattered energy, and has
only a minor effect on coda. Estimates of mean
free path and Q can be spoiled also by spatial
non-uniformity of these parameters; however, here
we discuss this important question only briefly.

Recently the ‘energy flux’ model (Frankel and
Wennerberg, 1987) was proposed to describe a
scattered wavefield at mean multiplicity of about
one. We shall compare this model with other
models in order to find out which model should be
recommended for use in the interpretation.

When scattering is anisotropic (mainly for-
ward), one can estimate its parameters not only
from the “direct’ wave to coda intensity ratio but
also from the pulse width (or retardation) of peak
of scattered waves. This idea was proposed in
Gusev and Lemzikov (1983) (see also the com-
pressed version of this publication in Gusev and
Lemzikov (1985)). (We shall often refer to the first
paper, and thus the reference is abbreviated as
GLB3.) This approach was recently used by Sato
(1989) based, however, on different theoretical
foundations. Further we shall propose a new ver-
sion of such an approach.

As a theoretical basis of formulae to be used in
interpretation we used the results of numerical
computations of envelopes of multiply anisotropi-
cally scattered waves. These computations were
carried out using the Monte-Carlo technique and
were described in Gusev and Abubakirov (1987);
the more detailed version of some results of this
paper is given here.

In the second part of the present paper we
apply the developed approach to interpretation of
records of earthquakes near Kamchatka. The re-
sults are of both methodological and geophysical
interest.

2. Definitions and notations

We introduce here notations to be used below.
r source to receiver distance;

t observation (lapse) time, elapsed from the
moment of radiation;

¢ body wave speed (S-wave speed in the fol-
lowing);

fiw=2af, Af  wave frequency (cyclic and an-
gular) and half of band width;

w total source energy radiation in a narrow
frequency band (f—Af, f+Af);

I(r, t) wave intensity for the same frequency
band;

I.(1) asymptotic (coda) intensity; I.(1r) =
10, t), I(r, t) = I.(1) when (ct/r) > 1;

1* mean free path and mean free time for
the isotropic scattering (IS) case; t* =1[/c;

T mean free path/time for the anisotropic
scattering (AS) case; t* =1*/c;

{cos 8) mean cosine of scattering angle 6,
defined by (cos 8) = [, cos Op(Q)dQ/ [ p(2)dQ
where @ is unit sphere and p(£) is the scattering
indicatrix.

[, 1F is the effective mean free path/time and
I,=1,(1— (cos 8)) " (1)
tX=1/c

Lpy Ly 835 13 empirical estimates of /, and r*
based on pulse broadening (subscript T) and on
intensity ratio of direct and scattered waves (sub-
script A);

0, 0. quality factor (non-elastic loss only) and
its estimate from coda;

0. quality factor due to scattering (Q,. =
wt™*);

q ratio Q. /Q=wt*/Q;

p dimensionless (‘optical’) distance for the IS
case; p=r/I;

T dimensionless lapse time (coincides with
mean multiplicity of scattering) for the IS case;
T=1t/t%

pa) pc’ Tﬂ’ Te

for the AS case:

p.=r/l, p.=r/l,1,=t/1% T.=1/tF.

i T retardation time of envelope peak mea-
sured from direct wave onset, and its dimension-
less version, 7, =1, /t¥;

i(p, 7), i (1) dimensionless scattered intensity

and its asymptotic version:

dimensionless distances and times
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2

i(p, 7)= —Wf(r, t) for a 2-D case,
!]

i(p, )= W!(r, t) for a 3-D case,

i.=i(0, 7).

3. On theories of single and multiple isotropic
scattering

The simplest model that describes a scattered
wavefield is that of single isotropic scattering (SIS).
It has almost obtained the status of the basic
model in this field of research. When the SIS
model is applied to near-earthquake records one
usually assumes that the source is point-like, in-
stant and as a rule isotropic; that scattering and
absorptive properties of the medium are spatially
uniform, and scattering is isotropic (that is, indi-
catrix is spherical). In this case, following
Kopnichev (1975) and Sato (1977), we may write

ISS(r, 1) = 4w:::*r n( z:i:) exp(—wt/Q)
(2)
W
(t) = 2wciti* exp(—wt/Q) (3)

The second formula (Aki and Chouet, 1975)
corresponds to (ct/r)— co and describes coda.
Formulae (2) and (3) represent the first variant of
the SIS model (let us denote it as SIS1) or Born
approximation, when scattering losses of direct
waves are ignored. If in (2) and (3) we replace Q!
by (Q '+ QL") we arrive at the second variant of
the SIS model, or SIS2. It is felt by some that the
SIS2 model is more accurate than SIS1, and this is
true for direct waves because additional losses are
in fact accounted for. This does not seem to be the
case for scattered waves. As was noted in (Aki and
Chouet, 1975) the additional exponential factor
can be compensated for by the contribution of
waves of greater multiplicities, i.e. SIS2 describes
single-scattered waves as such, but does not de-
scribe the full intensity. In fact the mentioned
compensation is accurate for surface waves, and
for body waves there is even some overcompensa-

tion. As a result, SIS1 gives more accurate predict-
ions though SIS2 formulae seem to be more ad-
vanced.

For further discussion we consider it useful to
pass to dimensionless variables p, 7 and dimen-
sionless intensity /. Formulae (2) and (3) now

appear as

; 1 +

iS5(p, 1) = —-—4”7 (728 ) exp(—gr)  (4)
i35(r) = 5 exp(—qr) (5)

The condition of applicability of the SIS model is
now merely 7 < 1.

In the opposite case of high multiplicity (7 = 1)
the model of diffusion (isotropic) scattering (DIS)
is valid (Wesley, 1965; Aki and Chouet, 1975). For
body waves the model gives:

w r? wt
JDIs = = o MOk
(r, 1) (.‘2(_%71'{1')3/2 BXP( $ctux Q@ )
(6)
I25(1) = 2(3n )m exp(—wt/Q) (7)
or, in the dimensionless form:
y 1 i
O reme ot EEAEP) IO
(377) 37
1
i) = el ~gr) %)

(377)

The assumptions 7<<1 and > 1 are often
unrealistic, and the problem of accurate account-
ing for multiplicity should be solved. An analyti-
cal approach to this problem for the 3-D case has
led until now to only approximate results even for
coda. Gao et al. (1983) found the formula for coda
that accounts for waves with multiplicity up to the
mth order. In dimensionless form it appears thus,

2(r) =5 [i (3)"

]CXP[—(‘I“*‘UT]
(10)

Values of coefficients C; were calculated up to



m=7. For 0 < 7 <12, eqn. (10) was approximated
(with an error of up to 1%) by the expression

1

‘.|".r’.l‘2

iGAO(7) = = [1+1.237 exp(0.337)]

xexp| —(g+1)7] (11)
As can be seen from the following, there is not a
wide range of validity for this result. Thus, at
present accurate analytical formulae for inter-
mediate 7 are lacking even for coda. The Monte-
Carlo technique, used by Gusev and Abubakirov
(1987), gave the smooth curve for coda that inter-
polates between the two asymptotics (3) and (7).
Its improved version is given below. For 2-D
scattering (surface waves), the analogues of (3)
and (7) were identical. Moreover, Shang and Gao
(1988) and Zeng and Nie (1989) have shown ana-
lytically that the same general expression for coda
is valid for any 7. They also obtained the general
(not asymptotic) formula, which in our notation
looks like

w
2at*y et —r?
Vet —r? t wt
XCXP(T—I—*—g) (12)
w
I(t) = 5 exp(—wt/Q) (13)

or, in the dimensionless form:

i(p, 7)= ;-:r'rlﬁ ;?:)cp[l,u"‘xr2 -0 —(gqg+ 1)1-]

I(r,t)=

(14)

io(7) = 5 (15)

Frankel and Clayton (1986) employed a tech-
nique of finite differences to simulate 2-D acoustic
wave propagation through a random medium.
While studying the domain =1, by this tech-
nique Frankel and Wennerberg (1987) found an
inadequacy of the SIS2 model, and proposed in-
stead a new one under the name ‘energy flux
model’ (EFM). In the EFM, scattered energy is
assumed to be uniformly distributed all over the
region limited by a spherically expanding direct
wave front; this leads to the expression (for body

waves)

1

4
3171'3

i&™M(1) = —=[1—exp(=7)] exp(—g7) (16)
The EFM was applied for interpretation.

The problem of accurate accounting for multi-
plicity is fully solved, however, for the 2-D case
only; there are several models for the 3-D case,
and one needs to choose one of them for interpre-
tation.

4. Anisotropic scattering and the model of multiple
low-angle scattering

Here we reject the second unrealistic assump-
tion that is used in the SIS model, namely, the
assumption of isotropic scattering. This assump-
tion could be reasonable if a definite characteristic
size of inhomogeneity existed, and this size was
much less than the wavelength. For real Earth this
seems improbable from general considerations.
The SIS model is also in conflict with observa-
tions. As was noted in GL83, the observed ‘direct’
(in fact, forward-scattered) wave pulse becomes
wider with ‘distance’; this observation was con-
firmed by Sato (1989). In the SIS model, however,
the direct wave pulse preserves its initial (‘source’)
duration until it ‘sinks’ into scattered intensity.

Therefore it is useful to discuss whether, and
how, the results for the isotropic case can be
modified to describe anisotropic scattering with a
(probably) forward-enhanced indicatrix. Let us
begin with the case of large lapse time. For this
case there is the following general result of trans-
port theory (Ishimaru, 1978, chap. 9): the radia-
tion field follows the DIS model with the effective
mean free path value /.. The condition of applica-
bility of the DIS model is 7, 1. At 1, <1 the
model of single anisotropic scattering is valid (e.g.
Sato, 1982). In the range r* <t <X the specific
case arises of multiple low-angle scattering
(MLAS), first applied to the discussed seismologi-
cal problem by Gusev and Lemzikov (1983, 1985)
and Gusev and Abubakirov (1987) who based
their work on Rytov (1966) and Chernov (1975).
Strictly speaking the MLAS model is valid only
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for a narrow indicatrix, but its real field of appli-
cability is wider as one can see below from the
results of numerical simulation.

The first important property of the MLAS
model is that the pulse-like envelope shape is
observed (contrary to the DIS case) but the pulse
broadens (contrary to the SIS case). The second
property is that pulse energy is nearly conserved
with reference to the case of a homogeneous
medium, because no back- or side-scattering arises.
In reality, forward-scattered waves cannot be dis-
tinguished from direct waves, and we shall refer to
the observed summary pulse as a ‘direct’ wave.

Broadening of a ‘direct’” wave pulse can be
described based on a theory of a multitude of
randomly curved rays (Rytov, 1966; Chernov,
1975). The variations of instant ray direction in
this approach are treated as a continuous random
walk over a unit sphere. Theory gives the follow-
ing estimate for mean square distance r2 _ of ray
point from its origin:

s 1
Foe={r*) = 3 ~ 553 [1 ~ exp(~2Ds)]

(17)

2Ds
s s
1= ]

where s=c¢t is current (cumulative) length of a
curved ray, and D is a characteristic medium
constant, called the ‘ray diffusion coefficient’. Re-
lation (17) leads to

5 — s =Ds%/3 (18)

Now let ¢ = (s—r,.)/c be rms time be-
tween (random) moment of wave arrival along
shortest distance (along r) and fixed moment of
its arrival along s. Let us change the viewpoint:
assume r to be fixed, and s to be random, and
introduce ¢ = (s, — r)/c. One can assume that
the pulse width is near to ¢, and 7, = ¢/ (this
fact can be proven accurately; the derivation is
omitted here for brevity). Now (18) gives

Dr?
4 (19)

n
i
W =

The theory gives also the following estimate for

mean cosine {cos v) of full angle v of deviation of
ray direction from undisturbed (or mean) one:

{cos v) = exp(—2Ds) (20)

Formulae (19) and (20) are for continuous random
walk. In the discrete case v changes step-like in
each act of scattering, and (cos v) is defined by

(cos vy = 3 (cosv,)P[k(s)=n] (21)
n=10

where (cos v, ) is mean cosine of full angle v, of

deviation for scattering multiplicity n, k(s) is

scattering multiplicity for a cumulative ray length

s, and P[k(s)=n] is the probability of event

k(s)=n.

Random variable k(s) in the case of uniformly
distributed scatterers has a Poisson’s distribution,
namely

(s/1)"
P[k(s) =n] =23~ exp(—s/1,) (22)
As for (cos v, ), it is a multiplicative function of n
(Landau and Lifshitz, 1976, section 127) so we
may write

{cos vu,) = {cos )" (23)
Now from (21), (22) and (23) one can derive

(cos v) = exp[ —s(1 — (cos 6)) /1,] (24)
Or, taking (1) into account:

(cos v) = exp(—s/1,) (25)

This important relation means that when the
length of the ray approaches /., the initial ray
direction is almost ‘forgotten’ so that (cos v} de-
creases from about one to exp(— 1). In other words,
after dimensionless lapse time 7, =1 the random
wavefield becomes approximately isotropic. Com-
paring (25) with (20) one obtains

1
=35 (26)
From (26) and (19) one can derive

172
fms =6 T (27)



which leads to

:I'ITIS €
Trms 1 6 (28)
This relation gives the general basis of estimation
of t* and /, from the ‘direct’ wave retardation or
pulse width. It is worth mentioning that in the
case of the MLAS, the leading edge of the ‘direct’
wave pulse is very steep, and the trailing edge
decreases rather slowly (turning into coda). The
retardation time ¢, for the peak of the pulse will
be much lower, therefore, than rms retardation
time 7. We can assume, however, that the
quadratic form of the law is preserved for 7, also,
SO we can write

T, =1, /1¥ = const - p? (29)
The theory also relates D = (2/,)"! with an auto-
covariation function (ACF) for fluctuations

An(&, m, §)=1[(c) —c(& n, £))/{c) of refractive

index n. Let

(2]

ACF(x, y, z)
=(An(¢,n,¢) An(E+x, n+y, {+2))
=(An*)N(x, y, z) (30)

so that N(0,0,0)=1, and let N(x, y, z)=
exp[ —(x%+ y? + z2) /a?], where q is a correlation
distance. Then, for a ray along z

o _ V7w (An?)
D= _<ﬂﬂ'2>£] azN/axzx—y=0 dz—f
(31)
or,
Iy= ﬁn_ﬁ (32)

It should be noted that the same relation can be
obtained also by the method of small perturba-
tions (Chernov, 1975) in the approach based on an
acoustic wave equation.

Based on a parabolic approximation (PA) for
an acoustic wave equation Sato (1989) has shown
how one can determine the combination (An?) /a
from observations of average retardation time of a
pulse peak. Further we shall calculate /, estimates
for both theories: MLAS based on ray or particle
statistics and PA. It should be noted that quadratic
law for ¢, (r) is common for MLAS and PA (at

Q = o0).

5. Comparison of the results of Monte-Carlo simu-
lation with other models, and derivation of
calibration relations for interpretation

In our recent paper (Gusev and Abubakirov,
1987) we carried out the simulation of scattered
wave envelopes using the Monte-Carlo technique.
We shall give a brief summary here of previous
results and include several new ones. The simula-
tion procedure was based on transport theory
which describes both particle propagation through
a medium with scattering obstacles and radiation
energy propagation through a randomly heteroge-
neous medium. The wavefield phase is supposed
to be random, so that any diffraction or inter-
ference phenomena are ignored. The simulation
consists of many repetitions of modelling of par-
ticle movement through the medium with scatter-
ing obstacles. The locations of scatterers and
scattering angles are random and are never re-
peated. The time interval between scattering events
is drawn as a pseudo-random number with ex-
ponential distribution. Unit values of mean free
time ¢* as well as of velocity ¢ are assumed during
simulation, so that modelling is carried out in the
space of dimensionless variables p, 7. The direc-
tion of trajectory after scattering is either iso-
tropic, or in order to simulate anisotropic scatter-
ing, is drawn according to gaussian indicatrix. In
this case the value of angle # is drawn from
Rayleigh distribution with parameter 8, and the
value of polar angle in a normal plane (that is
normal to the ‘old’ direction) is drawn from uni-
form distribution in (0, 27). We modelled the
spherically symmetrical case of isotropic point
sources of ‘particles’ and of a uniformly scattering
medium. No absorption was accounted for.

While simulating a trajectory we determined, at
each model time moment 7. =i Ar, i=1,2,..., in
which the spherical layer (limited by radii p, =
k Ap and p,,,=(k+1)Ap, k=0,1,2...) of
the particle is located. The result of simulation is a
set of values of normalized particle numbers, or
dimensionless radiation energy density, for nodes
of a grid in space (p, 7) (for the anisotropic case
in space (p,, 7)), with grid cell size Ap X At (Ap,
X A, ). Normalization is carried out through divi-
sion by the number of simulated particles, and by
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the volume of the spherical shell. In dimensionless
variables, intensity is equal to energy density. Thus,
we simulated the Green's function of one-speed
non-stationary radiation transport equation for
scalar waves, and the procedure described above
gives direct estimates of i(p, 7), smoothed by a
boxcar window of length Ap.

In Gusev and Abubakirov (1987) the simulated
i(p, ) function is presented as a function of 7,
for a set of p values, for the isotropic case and for
two computation runs for the anisotropic case,
namely, for § =25° and 50°. In these cases,
I,=5.21, and I, = 1.69/,, respectively. The coeffi-
cients are determined numerically through eqn.
(1). The examination of simulated envelopes re-
lated obvious differences between isotropic and
anisotropic cases of the kind described above: a

A:, 0=6.5
3.5
} J—
2.5
| e—
2

u\ —
012845 10 15 20 % T

Fig. 1. Envelopes of scattered wave amplitude computed by
Monte-Carlo technique for a case of isotropic scattering, for
six values of dimensionless distance p = r/l. Abscissa is dimen-
sionless time 7= ¢f /I, ordinate is the amplitude in arbitrary
units, the same for all plots. The plots are shifted vertically for
better appearance.

narrow ‘direct’ wave peak of constant duration in
the isotropic case (it can be observed in our simu-
lation up to p = 3) and broadening of the ‘direct’
wave pulse in the anisotropic case.

Having rejected the isotropic model, of two
anisotropic ones we choose the variant with § =
50°. The value 8§ =25° (or less) was considered
unacceptable, because at 7,> p, and 7, <3 the
envelope level ‘sinks’ clearly below the asymptotic
i, curve. This feature is not observed in reality (see
Rautian et al., 1981). We explain this feature by a
sharp decrease of the scattered wavefield level in
the spatial region behind the trailing edge of the
propagating ‘direct’ wave group. This region is ‘lit’
only by back-scattered radiation the level of which
is unrealistically low at 8§ = 25° (and will go down
further for narrower indicatrices). At § = 50° such
a feature is not seen in simulated envelopes. As no
means is known today to determine § values from
empirical data, we consider the problem of opti-
mal 8 value estimation as unimportant. The value
seems to lie in the range 40°-65°. At t > 3t* the
difference between simulated envelopes for aniso-
tropic and isotropic (with r* =¢*) cases practi-
cally disappears, as would be expected from theo-
retical considerations for the diffusion case.

The log—log scale of discussed plots can make a
clear realization of theoretical seismogram shapes
difficult; therefore, in Fig. 1 we present a set of
such curves, plotted with a common amplitude
scale. They correspond to the isotropic case, and p
varies from 0.27 to 6.5.

The simulated i, curve for the isotropic case
gives us a basis for interpretation of coda observa-
tions over the range between 7<<1 and 7> 1
(where the asymptotic SIS and DIS models are
enough). The improved version of approximation
of this curve can be written as

x71/2x
w 27t
Io(2) = 2met 2t * i ( 16"”*) ]
Xexp(—wt/Q) (33)
x11/2x
. 1 27
i(r)= Zy— [l + (m‘r) ] exp(—qr)
(34)

with x =1.10 + 0.025.



To compare different scattering models it is
useful to plot corresponding i(p, ) as a function
of p for a set of 7 values. Unlike temporal en-
velopes discussed above, this mode of plotting of
our results gives ‘snapshots’ of spatial distribution
of the dimensionless radiation energy density. For
the SIS model (see Fig. 2A) the functional form
depends only on the ratio p/7. EFM assumes that
i(p, 7) is independent of p at any given T; its
predictions are seen in Fig. 2B. For the DIS
model, valid for 7> 1, i(p, 7) at given 7 is a
gaussian bell (Fig. 2C). This model predicts non-
physical (infinitely fast) waves arriving before the
‘direct’ wave. The integrated energy of these waves

i {?] T=03

SINGLE SC. i J i
W SEE I

0 1 H 39
| r-'
ENERGY FLUX 103 B
[ _1"0 30
0 1 H 3
DIFFUSION T=03 C
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rJH\jE___sU
1] 1 7 3

Fig. 2. ‘Snapshots’ of dimensionless intensity i of scattered
waves at three moments of dimensionless time 7, for four
models; isotropic scattering-single scattering (A), energy flux
(B), diffusion (C), and a numerical model (D). The vertical
scale is distorted, because with an accurate scale, plots for
7=13 would not be seen at all. Vertical dashes in C are the
arrival moments of a direct wave; outside these points curves
are unphysical.
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Fig. 3. Distance-dependence of dimensionless intensity i as in
Fig. 2, but rescaled so that (1) direct arrival is fixed on new
distance axis p" = p/7 at p’ =1 and (2) i values are normalized
by their own value at p=0 (ie. i ). © © are Monte-
Carlo estimates obtained by summation in windows of width
Ap’ = 0.10. For direct comparison, theoretical curves are also
smoothed by a boxcar window of the same width.

is negligible however, for all 7 such that the model
is valid. Lastly, Fig. 2D presents the results of our
simulation for the isotropic case (indicatrix type is
unimportant here).

Comparing the last plot with three analytical
models we can see that each model is qualitatively
true for some range. To make the comparison
more convenient we rescaled the curves of Fig. 2
in the following way. The distance axis was com-
pressed so that with the new scale p’ = p /7 arrival
times always correspond to p’ =1, and i values
were normalized so that normalized intensity is
always equal to unity at p" = 0. The result can be
seen in Fig. 3. Examination shows that from a
quantitative aspect analytical formulae have only
narrow ranges of applicability. The SIS model is
reasonable up to T = 0.4, the DIS model to 7= 3,
and the EFM to 7= 0.5-0.8.

These conclusions can be additionally con-
firmed by examination of Fig. 4, where i.(7)
curves are plotted. One can see that at 7= 0.8-3.0
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the simulated relation i (1) clearly deviates from
any of the proposed analytical formulae. This
gives us serious grounds for using the simulating
i.(7) only while interpretating the empirical coda
level. The second preference is a combination of
the SIS1 and DIS models intersected at 7=
167/27. This idea was proposed previously in
GL83. All models containing the exp(—7) factor
seem to be inferior to these two.

The results of Monte-Carlo simulation enable
us also to construct master curves for interpreta-
tion of data on the basis of the pulse shape (width
and /or retardation). Here we choose the retarda-
tion time 7., of envelope peak as a main parame-
ter. Generally speaking, the rms retardation (or
some other measure) may be a better choice. Our
decision was based on two reasons: first, 7, esti-
mates were easy to obtain by our Monte-Carlo
technique and, secondly, the results will be ready
to apply in visual interpretation of photo records.

The smoothed simulated relation 7,,(p,) for § =
25° and 50° is presented in Fig. 5. The analytical
relation for DIS model

T =0L/2— P, (35)

is plotted also (for the case Q= o0), and the
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Fig. 5. Dimensionless retardation time 7, between direct wave
arrival and peak of scattered intensity, as a function of dimen-
sionless distance p,. 7., is rms retardation of scattered waves
according to the MLAS model. The dashed line is a theoretical
one for the diffusion model. Symbols are Monte-Carlo esti-
mates. The continuous line is recommended to be used in
interpretation. Extrapolation of this line is not secure.

relation (28) for 7, as well. 7 is greater than 7,
as expected.

The accuracy of our present Monte-Carlo
estimates of 7,, is low at p, <3 (not better than
20% at p, = 1.5), but two preliminary conclusions
can be arrived at. First, DIS predictions fully
coincide with simulation results at p, > 3. Second,
the trend 7, ~p} which was expected from the
MLAS model at p, < 1 seems to be extended up to
p.=2.0-2.5. At p. <1 our estimates can suggest
the smoothed and somewhat extrapolated relation
7.(p.) which is plotted in Fig. 5 as a first ap-
proximation. In the range p, = 0.5-2.0 it follows a
formula

T = 0.10p2 (36)
or in dimensional variables

1,,=0.10r*/(cl,) (37)



This leads to the following estimate of /:
le=0.10r/(et,,) (38)

Based on this formula we can now use the ob-
served retardation time—distance relation for the
determination of scattering properties of the
medium, The relation (38) can and will be im-
proved when simulations with better resolution
along the 7 axis and taking absorption into
account are carried out.

Based on PA for the acoustic wave equation
and using gaussian ACF for random velocity in-
homogeneities Sato (1989) obtains (at Q = o0) the
following relation:

_ Va oy -

o 3ac

Combining this with (32) gives

tm =37/ el,) (40)
and /, estimate of the form:
It =3r’/(cty) (41)

This estimate is 1.67 times greater than (38); this
difference demonstrates a real difference between
the predictions of the two theories and will be the
object of further study.

Sato (1989) also takes absorption into account
while calculating theoretical estimates of 7. The
effect of this factor is real, but at p, <1.5 it is
relatively weak, and we think that it can be ne-
glected in the first approximation.

6. Determination of the S-wave mean free path in
the lithosphere of Kamchatka

The theoretical relations of the previous section
were applied to an interpretation of real data. We
used observations of frequency selecting (‘ ChISS’)
stations Shipunsky, (SPN), Petropavlovsk (PET)
and Topolovo (TOP) operated in Kamchatka in
1966-1972, under the supervision of S.A. Fedotov
and S.A. Boldyrev. The stations were equipped
with 5-s vertical instruments of the S5S type; their
output, proportional to velocity, was passed
through seven octave band-pass filters with central

frequencies of about 0.4, 0.8, 1.5, 3, 6, 12 and 25
Hz, and then photo-recorded.

The interpretation technique employed is in
fact an improved version of the technique de-
scribed in GL83 (see also Gusev and Lemzikov,
1985). While designing the processing procedure
in GL83 the authors considered it important to
employ a method of estimating / that is more or
less independent of possible errors of estimation
of Q. Several approaches were studied. The first
(main) one is more traditional and based on inten-
sity ratio of direct and scattered waves. Its new
element is that this ratio is estimated at identical
lapse time, so that Q-dependent factors cancel.
We shall use this approach further.

Another very rough technique proposed in
GL83 was based on the theory that at traveltimes
of about t* the ‘direct’ wave pulse must ‘sink’ in
diffuse scattered background. This general idea
seems reasonable even today, but strict formula-
tion of the technique is difficult and we shall not
try to use it again. It is worth mentioning, how-
ever, that / estimates obtained in such a simple
way reasonably agree with supposedly more accu-
rate estimates obtained by the first technique in
GLS83 or in the present paper.

The third technique described in GL83 was not
fully Q-independent and will not be discussed
here. In addition, the technique was proposed to
estimate ¢* from pulse broadening of ‘direct’ S-
waves. We shall use the improved versions of the
first and the last approaches further, and begin
with the first one.

In order to compare levels of direct wave and
coda at the same lapse time the following em-
pirical functions were determined from observa-
tions:

a.(t)=A4.(t)/A4.(100) (42)

—coda amplitude normalized by its value at the
lapse time ¢ = 100s, and

a,(1) = Ay (1)/A4.(100) (43)

—reduced S-wave amplitude normalized in a simi-
lar way. The reduction of S-wave amplitude was
carried out to compensate for pulse broadening,
and individual A4, values used in the compilation
of (43) were computed as Ay, = A,/d/d,, where

61



62

SPN PET 1 Top
' f04 |

f=04
151 0.8
3' | 15

3

6 B

| 1 12
I I I T R R TR A

Fig. 6. Empirical coda amplitude envelopes in seven octave
frequency bands for three Kamchatka stations (space location
see insert in Fig. 7).

d, is the visual duration of pulse response of band
filter (that is minimal duration), and d is the
observed S-wave pulse duration. Relation (42) is
merely the experimental coda envelope. Seven
a.(t) curves for three stations were determined in
a mainly traditional way (see GL83 for details)
and plotted in Fig. 6. Relation (43) for SPN was
presented in GL83; the plot for PET is similar.
Not enough data were collected for TOP to con-
struct an a(7) curve.

From a_(t) and a.(¢) functions one can pass to
t* and / estimates in two steps. At the first step
one can go from amplitude curves to intensities
and their ratio, and at the second step, from this
ratio to ¢* and /. Let us begin with the theory for
the second step. The direct wave intensity I, in
the SIS2 model (in fact, generally), can be written
as

W
la(r) = etz e -Gt - ¢

where d, is the duration of assumedly boxcar
radiation pulse, r-distance and ¢, = r/c. The coda
wave intensity I, follows (33), and we assume here
ty=1 in (44). Now introducing the dimensionless
ratio B =tl_/(d 1), then (33) and (44) give

wly 4 ) (44)

B=B(¢)=27&xp(r)[l+(%T)x]vzx (45)

with x = 1.10 + 0.025. Thus, B depends only on 7,

and from (45) one can find inverse function 7=
T(B), and then t* =¢/7(B).

Now we see that at the first step we must fix ¢
and determine the ratio I_/(d.1;). As for 1, its
choice is dictated by the narrow region where we
managed to determine «,(¢) and a.(¢) simulta-
neously and with reasonable accuracy, so ¢t = 20-
25 s. Now consider the determination of intensi-
ties. To determine the S-wave intensity from
known (squared) amplitudes one needs to intro-
duce several corrections to account for: the dif-
ference between the actual S-wave pulse envelope
and assumed boxcar envelope; ChiSS band-width;
the difference between visual and effective pulse
duration; the difference between rms amplitude
and extreme peak amplitude, which depends on
the number of peaks. Similar corrections should
be included for scattered waves. For detailed dis-
cussions of listed corrections one should refer to
GL83. In the case of S-waves it is more convenient
to estimate directly ‘energy’, or the integral of J
over the pulse duration, which equals d . There-
fore, B values were determined from empirical
data in the way described and ¢* (and /= 3.5 km
s7't*) with them.

As will be demonstrated further, for lower
frequency bands of 0.4 and 0.8 Hz the surface
wave scattering model is more correct and should
be preferred. In this case one should use (13)
instead of (33), and should modify (44) accord-
ingly. An analogue of (45) for this case is

B=B(7)=r1exp(r) (46)

which was employed in practical computation.

Experimental ¢* estimates ¢} obtained in this
way (from the intensity ratio) correspond to ¥
estimates, because scattering is in fact anisotropic.
Values of 7¥ and /, = 3.5 km s~ 't¥ are given in
Table 1 for SPN and in Table 2 for PET, with
other relevant data. Their accuracy is about 30-
50%. Differences between three frequency bands
in the range 1.5-6.0 Hz are not significant and an
average estimate of /, = 150 km was obtained for
SPN. In the 6-25 Hz range /, is decreasing roughly
as f065,

To estimate ¢* and /, from pulse shape data
we used data of GL83 on the dependence of visual
S-wave pulse duration on distance. For 1.5, 3.0



TABLE 1

Estimates of medium parameters under SPN based on scattering models of surface waves (f = 0.4 and 0.8) and body waves (other

frequencies)

Parameter Central frequency of band filter f (Hz)
0.4 0.8 15 3 6 12 25

1(s) 25 25 25 20 20 20 20
log a, 0.55 0.64 1.13 1.58 1.94 2.10 2.39
log a, 0.95 0.70 1.41 2.28 271 2.87 3.18
log B -0.27 0.53 0.48 0 0.19 0.53 0.93
t¥ (s) 68 22.50 37 59 44.30 27.80 17.80
I (km) 238 79 130 207 155 97 62
tT (s) - 31 34 29 - -
Iy (km) = 110 120 100 - =
t* (s - 43 43 43 27 17

I (km)* o 150 150 150 95 &0
Q.(t=50-80s) 180 200 200 315 500 825 1600

* Values assumed for all stations while calculating Q. for 3-D cases.

and 6.0 Hz bands estimates were found for the
parameter p in the relation

t,=p(r/c)’ (47)
where ¢, is the d value corrected for pulse broad-
ening by band filter (this correction is in fact
important for the 1.5 Hz band only). One can
assume as a first approximation that 7, = 0.5¢,
then (37) gives 1§ = 0.2 /p. Values of t¥ and /1=
3.5 km s~ 1t¥ for SPN are also given in Table 1.
Differences between the three frequency bands are
small, and the common estimate /= 110 km was
obtained. Data from hypocentral distance range

TABLE 2

40-100 km were used. Taking real accuracy into
account, the agreement between [/, and /; values
is reasonable. Estimates of / by both techniques
are plotted in Fig. 7.

Sato (1989) used parabolic approximation to
study pulse broadening. For Ashio station in Japan
an estimate log({An*) /a) = —2.98 + 0.32 for five
frequency bands from 2 to 32 Hz and for hypo-
central distance range of 80-300 km was ob-
tained. The value —2.98 through (32) leads to the
estimate /}* = 270 km which corresponds to /=
162 km. An estimate for /, was previously found
for the neighbouring region to be 83 km (Sato,

Estimates of medium parameters under PET and TOP based on scattering models of surface waves ( f = 0.4 and 0.8) and body waves

(other frequencies), (¢ value is 25 s)

Parameter Central frequency of band filter / (Hz)
0.4 0.8 1.5 3 6 12

Station PET

log a_ 0.52 0.73 1.18 1.08 1.38 -
log a, 0.60 0.65 1.17 1.55 2.10 -
log B 0.38 0.79 1.06 0.56 0.43 -
1 (s) 26.70 17.30 19.60 33.5 39.50 -
I, (km) 93 61 69 117 138 —
Q.(r=50-80s) 220 150 135 560 640 870
Station TOP

Q.(t=50-80s) 80 120 185 250 415 720
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Fig. 7. Effective mean free path /, estimates for Kamchatka, at
different frequency bands. For SPN and PET [/, estimates are
given (from amplitudes), for body wave (3-D) and surface
wave (2-D) scattering. For SPN, [, estimates (from pulse
broadening) are also given. The insert illustrates station loca-
tion.

1978). Thus, /, and /; estimates for Japan as well
as for Kamchatka are comparable with one another
and for the two regions.

There are three kinds of complications related
to /., estimates of the [/ type. First, one should
remember that for crustal rays, representation of
energy propagation by surface waves is a well-
known alternative model to body wave scattering.
It should be noted, however, that in island arc
regions no Lg wave is observed and no systematic
short-period surface wave train can be seen. For
this reason the body wave scattering model of
energy propagation is applicable. The detailed
comparison of capability of the two models to
describe real data is left for the future.

Secondly, there is a possibility of dependence
of intensity of forward-scattering on local ray
angle of incidence. In a random medium with a
tendency to layering, scattering can be stronger
for near-horizontal rays as compared with near-
vertical rays. Phenomena of this kind are not easy
to observe. They can imitate depth dependence of
/. discussed below.

Last but not least is the problem of vertical
non-uniformity of scattering properties of the
medium. For a given angle of incidence at the
receiver, the greater the distance, the greater the

proportion of time energy that propagates in deep
‘low-turbidity’ layers (up to the turning point of
the ray). The same is true when r is constant but
source depth is increased. Hence, the observed
t,(r) dependence can be slower than the expected
r? law, and /, estimates can depend on distance
and /or source depth. This possibility was consid-
ered so important that an additional study was
carried out.

We took S-wave groups (visual periods 0.2-0.8
s) of local earthquakes on photo-records of con-
ventional horizontal short-period electromagnetic
seismographs (period 1.2s) at Shipunsky station as
initial data. Use of broad-band records (in con-
trast to band-filtered ones) is justified as soon as
our previous /, estimates are stable in the range of
1.5-6.0 Hz. Data were selected with hypocentral
distance between 70 and 200 km. We measured
the retardation of S-wave peak amplitude shortest
on the two horizontal components with respect to
either (1) visual or (2) computed S-wave onset.
The results for versions (1) and (2) almost coin-
cide. Two groups of data (the total number of
events = 50 in each group) were formed: the first
(a) with depth h=0-35 km and the second (b)
with h=35-150 km. The empirical 7 (r) rela-
tionship was estimated to be: (1.95 +0.23)(r/
100)'1%93% (3) and (1.07 + 0.08)(r/100)"94£0.22
(b) (in s).

Based on the average ¢, value for typical r =
100 km, /; estimates from (38) are: /(a) =150
km, /;(b) =270 km. Thus, depth dependence of
scattering properties seems to be prominent.

The results above make one realize clearly to
which volume of medium each estimate corre-
sponds. /, estimates are based on data for lapse
time 20-25 s. Assuming SIS this leads to a one-way
distance of 35-40 km; thus the value /, = 150 km
(for 1.5, 3.0 and 6.0 Hz) corresponds to a hemi-
sphere of the 35-40 km radius under Shipunsky.
As in GL83 mainly ‘crustal’ (depth 0-40 km)
events were studied with S-P of 5 to 15s, our
estimate /=110 km for ChISS data correspond-
ing to the disk-like volume of radius of about 100
km and thickness of 40 km. The estimate /. = 150
km for case (a) of broad-band data corresponds to
the same volume. Estimate /1 =270 km for the
case (b) corresponds to the hemisphere of 100 km



radius. Thus, three estimates for upper layer agree
well, and the last, greater value indicates much
lower turbidity of deeper Earth layers.

7. S-wave absorption in the lithosphere of
Kamchatka

In the case of surface wave scattering (13) and
also for body waves when SIS1 (3) or DIS (7)
models are valid one need not know the / (in fact
1.) values when attempting to obtain Q estimates
from coda. In practice, 7 (in fact 7,) values be-
tween 0.5 and 3.0 are typical, hence one should
use theory for body waves (33). To do this, one
needs to estimate / in advance. In the following
computations for all stations we fixed a set of /
and ¢* values which is given in Table 1. At a
given ¢*, the envelope shape follows (33), where Q
is now the only free parameter (but amplitude is
level).

To obtain Q (Q.) estimates from coda we
constructed a set of curves (33) with Q. as a
parameter. This set of master curves in log—log
scale was compared with experimental curves of
Fig. 6, and the best-fitting curve was chosen. The
degree of fit differs from different bands and
stations. Generally, one cannot fit a theoretical
curve to the empirical one in the whole range of
lapse time. Therefore we estimated Q_ for a set of
successive ¢ intervals of log duration equal to 0.2.
These estimates were ascribed to the log centre of
each interval. Examples of empirical relations
Q.(1) obtained in this way are plotted in Fig. 8 for
two frequency bands for three stations. For the 0.4
and 0.8 Hz bands Q_ estimates were negative. We
considered this fact as an indication that the
body-wave scattering model is incorrect, and re-
peated interpretation in the context of the surface
wave scattering model.

Examination of Fig. 8 shows that the use of the
theoretically correct I (¢) relation does not lead to
the agreement of Q_ estimates at different lapse
times. Therefore the theoretical model used is,
strictly speaking, inadequate, and Q_ estimates
may be doubtful. One can consider them, how-
ever, as more or less realistic in cases where the Q,
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Fig. 8. S-wave quality factor Q_ estimated from coda for two
frequency bands as a function of lapse time moment corre-
sponding to the log centre of the lapse time window used for
Q. determination. The window length was 0.2 in log units (e.g.
50-80 s). Coda shape was assumed to follow (33).

estimate weakly depends on ¢ over a wide enough
¢ range.

Of interest is a comparison of described esti-
mates with those obtained by the SIS1 model.
They were computed for TOP station, and are also
shown in Fig. 8. One can see that differences are
not large, from 10% at t=40s up to 30% at
t = 300s; Q. estimate by SIS1 is always below that
produced by the full theory. One can also see in
Fig. 8 that Q_ estimates from different stations
tend to get closer at large ¢. This is reasonable
from the viewpoint of general assumptions on
coda formation.

Frequency dependence of Q. is presented in
Fig. 9 for all stations and frequencies where we
had enough data and for the lapse time interval
t = 50-80s which generally gives the most stable
estimates. This dependence for body waves gener-
ally follows the usual relation Q. (f)= Q,f" (for
frequencies higher than about 1 Hz) with x = 0.7-
0.8 and Q,= Q.(1 Hz) = 160-180. These Q_ val-
ues can be associated with a half-sphere of radius
100-150 km around the station. For reference we
compiled several published Q_ estimates (using
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Fig. 9. Q. estimates for lapse time window 50-80 s, for
different frequency bands, for three Kamchatka stations. The
surface wave model was used for 0.4 and 0.8 Hz, and the body
wave model for others. Estimates for Japan, South Kuriles and
Garm are added for comparison; they all correspond roughly
to the same lapse time window.

the SIS1 model) with specified lapse time interval
which was near to the interval we used (Akamatsu,
1980; Rautian et al., 1981). Estimates of Rautian
et al. (1981) were somewhat modified based on
original a_ curves.

It is worth mentioning that advanced estimates
of I, and Q_ presented here are not very far from
the initial estimates of Gusev and Lemzikov (1983)
who used more primitive versions of the approach
described.

8. Discussion and conclusions

In the theoretical part of this paper we present
an approach to the modelling of scattered waves
and interpretation of observations which is based
on particle or ray statistics. Such an approach is
clearly more primitive than the full wave theory,
but it enables us to solve certain simple problems
of intensity. We studied in some detail the case of
a uniformly scattering medium, and proposed two
independent ways to estimate mean free path—
from ‘direct’ to scattered wave intensity ratio and
from pulse broadening of the direct wave.

This pulse broadening phenomenon was dis-
cussed above based on a multiple low-angle
scattering model. One result of this model is of

general interest, as it may clarify some old ap-
parent paradoxes of observational seismology re-
lated to amplitude decay of near-earthquakes. In
fact, approximate energy conservation at relatively
short distances combined with r? pulse broad-
ening leads to r~? amplitude decay of body waves.
This theoretical result can easily explain the obvi-
ous contradiction between fast-amplitude decay
expressed in magnitude calibration curves and
peak acceleration attenuation laws (typically r™*,
with x =1.7-2.3) on one hand, and the general
success of seismic moment determination based
on the assumed r~! law for spectral amplitude, on
the other hand. It should be noted that such a
contradiction can be expected and in fact exists
for small and moderate earthquakes only, when
source duration is small relative to scattering-re-
lated broadening. For larger events pulse duration
is determined by source duration which is dis-
tance-independent, hence amplitude decay be-
comes much nearer r~".

We applied the theoretical results to interpreta-
tion of real data and obtained two rows of mean
free path estimates which generally agree. But an
attempt to estimate Q for S-waves from coda in
frames of the discussed model was only partly
successful; the dependence of Q estimates on the
lapse time window seems to demonstrate the devi-
ations of a real medium from the assumed simple
model and casts some doubts on the accuracy of
our [ estimate. Generally speaking, model inade-
quacy may lead to systematic and mutually com-
pensated errors in Q and /. Particularly dangerous
is the rather realistic case when Q and / both
increase with depth (case discussed in GL83). Here
we have shown that / increase with depth is real.
This increase leads to growth of ‘radiative’ losses,
which add to intrinsic losses thus decreasing Q
estimates based on the uniform medium model.
Construction of interpretation procedures for such
cases is an important task for the future.

In view of problems of the type described above
the gain in accuracy obtained by our application
of a more advanced theoretical model for coda
waves in a uniform medium may be considered of
secondary value. We consider it to be, however,
important in principle and thus worthy of special
remark.



The technique of / determination through pulse
retardation measurement (giving an /; estimate)
developed above seems to have at least two ad-
vantages. First, it gives us values which are almost
Q-independent, and fully independent of tradi-
tional /, estimates providing an opportunity of
mutual checking. Secondly, /; estimates are much
more effective for study of / structure because the
main contribution to / is produced by a relatively
narrow tube along the ray, and not by a large
half-sphere as for /,. Therefore, a perspective is
obtained from the tomographic approach which is
almost impossible with /, estimates.

In conclusion, for many problems of short-
period seismology where phase information and
diffraction phenomena are not of key importance,
an energy transportation approach and its realiza-
tion through the Monte-Carlo technique can pro-
vide results that are useful means of interpreta-
tion.
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