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ABSTRACT

Gusev, A.A., 1992, On relations between earthquake population and asperity population on a fault. In: T. Mikumo, K. Aki,
M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectono-
physics, 211: 85-98.

Data were compiled on the trend of teleseismic short-period (7= 1.4 s) peak amplitude and spectral level vs M,,. For
log M, > 26, slopes (in log-log scale) of these trends were estimated as b =0.35 and B = 0.39, respectively. For a similar
trend of seismogram peak factor (peak to rms amplitude ratio) the slope estimate is p =0.13.

B = 0.39 disagrees with the @ =2 spectral model but can be explained by the multiasperity fault model of Gusev (1989) if
the typical asperity size 2R is assumed to grow slowly with M. If R, a M;?. then B =1/3 + 8, and the empirical estimate
of & is 0.06. This value generally agrees with the f_ .. vs M, trend revealed recently. The last is supposed to reflect the R,
vs M, trend as well.

p=0.13 is fully incompatible with a Gaussian process record model (predicting p =0.03) and indicates a peak
distribution of a heavy-tailed type. Assuming a power-law distribution for amplitudes of individual pulses (each one
produced by failure of a single asperity) that add up to the observed record, we estimated the exponent « of the power law
to be about 2.3. This may indicate that a = 2.3 for the distribution of stress drop values of individual asperities. This a value
agrees reasonably with a = 2 found in Gusev (1989) from near-field data.

Theoretical « values are estimated for two hypothetical regular hierarchical asperity structures on a fault: a grid-like
structure, giving a = 2, and a clustered structure giving a = 1. To obtain these estimates, we assumed a near-critical mode of
overcoming barriers of successive scales during rupture propagation. Comparison with empirical data shows no contradic-
tion, and suggests that some hierarchical asperity structure, probably a grid-like one, actually exists on natural faults.

Introduction

The short-period magnitude vs seismic mo-
ment relationship is one of the simplest and most
reliable pieces of evidence that must be explained
by any theory trying to describe radiation from an
earthquake source. Generally, the same is true
with respect to less reliable estimates of a similar
trend of short-period spectral level vs seismic
moment. Nevertheless no systematic explanation
of these trends was proposed up to now. We shall
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try to suggest such an explanation based on the
multiasperity fault model suggested recently by
this author (Gusev, 1986, 1989). The main idea of
this model, developed along the lines of Das and
Kostrov (1983, 1986) and Boatwright (1988), is
the successive failure of small asperities during
earthquake rupture propagation. Comparing the-
ory with near-field observations, typical parame-
ters of asperities were estimated to be: size 2R,
= 0.5-1 km, (local) stress drop At = 300-800 bar,
filling factor (fraction of fault area covered by
asperities) k;=2-10%. The asperity stress drop
distribution was close to the power-law (Pareto)
type, with exponent a near 2. The multiasperity
fault model provides a more or less coherent
explanation of average trends and other features
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of near-field short-period data, including peak
acceleration, acceleration spectral levels and
spectral shapes. Hence, it is only natural to apply
the multiasperity fault model to teleseismic data.

The first question we shall try to answer is
whether teleseismic observations can be reason-
ably explained by this model. We shall show that
such is indeed the case, and in particular that the
assumption of a power-law type of distribution
for asperity stress drop agrees with the data. This
conclusion is of immediate relevance to the prob-
lem of dynamics of seismic rupture propagation.

Fukao and Furumoto (1985) have discussed in
much detail the problem of stochastic propaga-
tion and termination of seismic rupture along a
fault, including explanation of a power-law source
size distribution, mainshock-aftershock magni-
tude difference and other evidence. Based on all
this evidence they proposed the idea of a hierar-
chical, multiscaled structure of seismic ruptures
and of a hierarchy of grid-like barriers on a fault
which constitute boundaries that stop these rup-
tures. They applied an approach similar to the
renormalization group approach. They found that
in the 1D case, the probability density of the
width of linear barriers can be described by a
power function with exponent 2. In terms of
distribution this means a power law with expo-
nent 1. This result actually is valid for the 2D
case as well. Gusev (1989) replaced the men-
tioned linear barriers of variable width by chains
of asperities of variable strength, and showed that
this strength should be power-law distributed,
with the exponent a near to 2. In order to
understand the possible meaning of the observed
a values we shall develop these results, and ar-
rive at some rather preliminary conclusions on
the possible structure of the asperity distribution
over a fault.

On amplitude and spectral trends of earthquake
source radiation in the 0.5-1 Hz frequency band

In order to compare theoretical and observed
properties of short-period earthquake source ra-
diation one needs to summarize relevant observa-
tional results. To do so one can compile the
published data. Such a compilation was carried

out recently by the author (Gusev, 1991); we shall
shortly cite the relevant points here, and also add
some new information. Revised intermagnitude
relationships were constructed using the M|, scale
as the fundamental one. In particular, trends of
short-period magnitude mpx™ of the Soviet ESSN
service and its ‘“western counterpart” m}
(Koyama and Zheng, 1985) or equivalently i,
(Houston and Kanamori, 1986) vs M, were found;
they were parallel, differing by a constant in the
average:

myF=m¥M—0.18 (1)
At 26 <log M| < 30, the trend is log-linear:
mpsM =b log My+C (2)

and values b =0.35 and C = —2.75 were deter-
mined rather reliably. Although no formal error
value was given, the real accuracy of b is about
0.02. One can compare this b value to the earlier
estimates of Koyama and Shimada (1985), equiva-
lent to b =0.40, and of Houston and Kanamori
(1986), equivalent to b = 0.37. Both the linearity
of m¥M vs log M, and the particular value of b
present important information on the source
spectral structure. To prevent confusion we must
mention that standard m, of NEIC is incompara-
ble with m3M or m*db because, according to
accepted routine, for large enough M, it is actu-
ally not based on the true maximum of a record.
Let us recall now that at a given distance,

mpgM =log(A,,/T,) + C, = log At Cy  (B)

where A, is the amplitude of the short-period P
wave record, that is of source P wave radiation
filtered by a certain narrow band filter with a
central frequency of about 0.7 Hz, and where T
is the visual period of the record which can be
considered M -independent (Houston and
Kanamori, 1986; Boore, 1986). In other words,
the response of a short-period instrument com-
bined with an absorption filter produces a signal
which can safely be considered narrow-band.
Therefore, for A, one can write:

Ay My (4)

Additional data on this point are average
trends of frequency band PV magnitudes deter-



mined by Zhbrykunov and Zhbrykunova (1974)
following ideas of K.K. Zapolskii. These magni-
tudes were determined for many earthquakes
recorded by octave-bandwidth filters added to a
conventional seismograph (“ChISS station™).
Each of two cutoffs of these filters was formed by
a fourth-order analog filter. For each of three
bands with central frequencies of 0.67, 1 and 1.5
Hz, the equivalent b value for a log M, range of
26.5-28.5 is equal to the common figure of 0.35.
The original data were presented in the mp,
scale; we reduced them to the M|, scale using the
mpy vs M, relation from (Gusev, 1991), which is
near to the standard ones.

In Gusev (1991) data were also compiled on
the trend of short-period (around 0.7 Hz) spectral
level S, versus M, and it has been shown that
for B in:

Sep o M§ (5)

teleseismic P wave data give a 8 value of ~ 0.39.
This value practically coincides with the spectral
trend of California earthquakes (at 0.7 Hz) de-
duced by Papageorgiou and Aki (1985) from local
data. Earlier teleseismic estimates of g are: 0.37
according to trends in Gusev (1983), 0.50 after
Koyama and Zheng (1985), 0.45 after Houston
and Kanamori (1986) and 0.41-0.52 for subduc-
tion zone earthquakes after Zhuo and Kanamori
(1987). Data of Hartzell and Heaton (1985) indi-
cate B =0.33 to 0.40 at M =725 to 8.75, but
show saturation for larger events; we believe that
this saturation was produced by some peculiarity
of their data set. To estimate b, common cata-
logue data on m and M, (hundreds of events)
were used for a log M, range of 25-30; thus
b =0.35 can be thought as the reasonable world
average; however, only a limited data set (tens of
events) could be compiled for the estimation of
B, and its accuracy is lower. We believe that the
real accuracy can be represented by the estimate
range of B =0.375 to 0.42 (related primarily to
the variations between data sets, and only secon-
darily to the statistical errors proper). Therefore
we consider the difference between the empirical
B and the theoretical B = 1/3 for the w~? model
as being real; the same can be concluded from
the B estimates cited earlier.

Based on the values b =0.35 and B =0.39,
one can estimate the trend of the peak factor PF
of the teleseismic record. Use of this parameter,
defined as the ratio of peak to rms-amplitude,
has an important advantage—it enables one to
decouple effects related to signal statistics from
spectral trends as such, which is desirable. As-
sume for sufficiently large earthquakes:

PF aM§ (6)

Then one can estimate p in the following way.
From Parseval’s theorem one may write the rms-
amplitude as:

Armta:S:ap(Af/d) (?)

where d and A f are effective duration and band-
width, respectively. One can assume Af as con-
stant for a short-period record. As for d, for large
enough M, (log M, > 26) the assumption of simi-
larity gives d o M}/*; combining this with (5) and
(7) gives:

(.5

A aMEV (8)
At the same time, A ., o M{ (4), hence:
PF=Apcuk/ArmeIM[?_'ﬁ+'ﬂ' (9)
and:

Gl TR (10)

For the cited b and B, p =0.13. The pair (B, p)
presents independent information on the spectral
trend and record statistics.

Now we shall shortly discuss the meaning of
the value B = 0.39 (a more detailed discussion is
outside the scope of the present paper). Note
that the @ ~? spectral models (Aki, 1967; Brune,
1970) predict g =1/3 for large enough magni-
tudes. The descriptive w ¥ model of Thatcher
and Hanks (1973) predicts B =0.39 at A = 1.83.
This last model, however, lacks clear physical
interpretation. The multiasperity fault model pre-
dicts (Gusev, 1989, eq. 19) the following relation
for the intermediate spectral level between com-
mon corner frequency f, and the characteristic
frequency f, (usually, f, =3 to 6 Hz) related to
asperity failure time T, = 1 /f,:

S, & S'?R, (11)

where S is the source area and 2R, is asperity
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size, assumed similar for all asperities in a given
source. If R, is independent of magnitude, simi-
larity gives B = 1/3 again. However, recent publi-
cations (Umeda, 1981; Umeda et al., 1984; Aki,
1986, 1987; Faccioli, 1986) indicate that the upper
cutoff frequency f,,, of the acceleration spec-
trum decreases with magnitude. This trend of
fay can be considered as the direct indication of
the growth of R, with magnitude. (The idea that
foax 18 related to the source spectrum is not
common, however: many people relate the f,,,
phenomenon in general to effects of the fre-
quency-dependent absorption in the medium.)
Assuming the form of the R, vs M, trend to be:

Ru C(M(? (12)

then B =1/3 + 8. As for the number of N asper-
ities in a particular source, it is proportional to
the source area S and inversely proportional to
area S, associated with each asperity. Let §, =
7R2, then:

Sl =S.‘r/kl'=1TR3/kt' (13)
where k; is the filling factor, or fraction of fault
area covered by asperities. Assuming k; to be

constant and S o M}/3, we obtain S, o R2 and:
(14)

NoaSR;2aMi/322
If b=0.39, 6§ = 0.06. This estimate of § is prelim-
inary, but it does not contradict the observed f,,,.
trends. The fact that the multiasperity fault model
provides a common explanation to two indepen-
dent pieces of data looks hopeful.

Interpretation of the trend of the peak factor of a
short-period record

To understand the meaning of the observed p
value we need some theoretical reference point.
The simplest is the Gaussian-process model of a
seismic record, in which an apparently random
seismic record is represented as a realization of a
(maybe modulated) Gaussian process (Gusev,
1979, 1983; Hanks and McGuire, 1981). It is well
known that for the simplest version of this model
—modulation by boxcar of duration d—the peak
behaves as:

PF = (In f,d)"’ (15)

where f, is some representative (average) fre-

quency. This relation is non-linear on a log-log
scale, but can be approximated as linear. Hanks
and McGuire (1981) give p=0.03 as a useful
approximation for accelerograms. Since the only
relevant value is the number of peaks, this value
remains valid for a short-period teleseismic record
as well, because the numbers of peaks are compa-
rable. In both cases, only sufficiently large magni-
tude events were considered so that the d o M}/3
relation was thought to be valid. This means,
roughly, M > 5 for accelerograms at a distance of
25 km, and M > 6.5 for teleseismic records.

The value p=0.03 is strongly different from
the observed p =0.13, and this is a good reason
to reject the Gaussian model for the teleseismic
case. Lack of non-linearity of the magnitude trend
is an additional argument. The Gaussian model is
doubtful also for accelerograms (Gusev, 1989). In
a search for a better theory one has to find a
model which conserves the random nature of a
record but ascribes larger probability to high
peaks (“heavy-tailed” distribution). These prop-
erties are secured by some special kind of pulse
process model, which represents a record as a
sum of similarly shaped pulses whose onset times
are random (forming a Poisson-type point pro-
cess) and whose amplitudes are also random, and
obey some reasonable heavy-tailed distribution
law. In such a model, the power (and Fourier)
spectral shape is determined by pulse shape only,
whereas peak statistics depend on pulse ampli-
tude statistics and also on pulse density.

Generally, the choice of a particular family of
distribution laws to describe pulse statistics is
somewhat arbitrary, but the condition of a linear
p vs M, trend (on a log-log scale) identifies
distributions with a power-law tail as the most
convenient class. Between these, the power-law
or Pareto distribution:

x>1
r<l

(16)

is the simplest and will be assumed to govern
pulse amplitudes. Strictly speaking, P(x) is a
complementary cumulative distribution function;
we shall refer to it simply as a distribution func-
tion for brevity.

Pr(x>x')=1—-F(x)=P(x)= {Jlr'“



This model was successfully applied recently to
accelerograms which were supposedly produced
by rupture of a multiasperity fault (Gusev, 1989).
In that case, individual acceleration pulses were
short enough and pulse overlapping was negligi-
ble. In such a simple case, pulse amplitude distri-
bution merely coincides with record peak distri-
bution. With short-period teleseismic records, the
situation is more complicated. Breaking of a sin-
gle asperity produces a displacement step of du-
ration 7,. This step passes through a medium
absorption filter that cuts off nearly all energy
above 0.8-0.9 Hz, and also through an instru-
ment filter. Their joint effect produces essentially
a narrow-band filter, with the central frequency
close to 0.7 Hz. It will convert displacement steps
of duration 7, into pulses of typical duration
equal to an inverse filter/record bandwidth of
about 2 s. Because of the narrow-band nature of
a record, it may be considered also as a filtered
(inverted) accelerogram; this enables one to re-
late record peaks to asperity stress drops, as was
done in Gusev (1989) with respect to near-field
accelerograms. Now note that individual pulses,
as they are modified by the described filter, will
strongly overlap. Their number (or, rather, rate)
will not, however, be very large (as nceded to
safely use asymptotic results of the theory of
probability). Hence, to study the proposed model
in detail we need numerical simulations. Some
preliminary results can be obtained, however, em-
ploying general properties of distributions with
power-law tails (Feller, 1971, Chapters 8 and 14).

The first important result is that the asymp-
totic behaviour of a sum of independent variates
with a common power-law distribution with expo-
nent « depends substantially on the actual a
value. When 0 <a <2, this sum converges to
some asymptotic law having a power-law tail with
the same «. However at « = 2 the asymptotic law
is Gaussian (as it must be if variance is finite).
The convergence rate in the second case depends
on a, and it is very low for a values near to 2. As
for the maximum among variates distributed with
a power-law tail with exponent «, its median will
be distributed also with a power-law tail of the
same exponent a for any «. What does all this
mean for our problem?

Let a be smaller than 2, and assume for a
while that pulses fully overlap, i.e. their relative
time shift is zero. Then distribution of amplitude
of their sum will have a power-law tail with the
same «. Otherwise, if pulses are so rare that
there is no overlapping, peak amplitude will be
distributed as a maximum among power-law vari-
ates, that is, again with a power-law tail of the
same a. We can try to interpolate between these
extreme cases and to guess that in case of a <2,
the distribution of peaks will always have a
power-law tail with the same «. If, on the other
hand, @ = 2, in the case of a zero time shift the
amplitude of the sum will be Gaussian-distrib-
uted asymptotically, that is in the limit of a very
large number of pulses, and the difference be-
tween the actual and the Gaussian distribution
will increase as the number of pulses becomes
smaller and as the « value approaches 2. The
same will be generally true for randomly phased
pulses: the peak distribution law will be deter-
mined by the « value and actual multiplicity m
of overlapping pulses.

To estimate the order of magnitude of m, let
M =8, 5§ =8000 km?, §,=2km, k;=5%, d =50
s; then N =200, pulse rate is 4 s~ ' and, for a
pulse duration of 2 s, m = 8. Simple numerical
estimates show that for a between 2 and 3, the
tail of the distribution of a sum of 10-15 variates
is not near to that of a Gaussian distribution, but
can be approximately described instead by a
power law with some effective exponent «, (which
is always greater than the actual « for pulses).

Therefore we can propose the following pre-
liminary interpretation of the observed value @,
of the exponent of the distribution law for record
peaks. If @, is below 2, then the “true” a (for
pulses) is equal to a,, and if « is above 2 then
the “true” a is bracketed between 2 and a,. To
apply this scheme to real data we must connect
a, with p which is known from observation. To
do so we need a theoretical formula for p for a
pulse process. This can easily be done. Let A4, be
the mean or median peak of single pulse, and d,
its total duration. Pulse rms-amplitude (based on
duration d,) can be written for this case as:

Arms.l =CAI {17)
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with a particular constant c. The pulse energy is,
by definition:
E ,=d A? (18)

rms, |

For N randomly phased pulses, the energy is
NE,, and the rms-amplitude of a segment of
process with duration d and containing N pulses
is:

A= (NE,/d)"* = A\(cd,)"*(N/d)"*  (19)
For non-overlapping pulses with a power-law am-

plitude distribution, the median value for the

maximum among N amplitudes is (see Guseyv,
1989):

A,=AN'* (20)

In the case of 0 <a <2, this formula remains
true for overlapping pulses because any overlap-
ping has only minor effect on the strongest pulsc
(see Feller, 1971). For the peak factor we obtain:

PF=A,=A.=(cd) ?d'/?N"/==12 (21)

rms

In the case of a =2 and strong overlapping, we
assumed the record peak distribution to have a
power-law tail with exponent «a; this immedi-
ately gives (analogue of (20)):

PF acn'/a (22)

where n is the number of independent extrema.
Substituting N(M,,) from (14) into (21) and as-
suming n o d o M}/3, for these two cases we ob-
tain:

p=3+(2/3-28)/a,—1/6 (23)
or:
p=1/3a, (24)

respectively. Substituting p=0.13 and & = 0.06
gives a, =2.29 from the first formula. Thus « is
above 2 and the second formula may be more
adequate. It gives a, = 2.56, therefore a ranges
between 2 and 2.6. We shall use below a = 2.3 as
a preliminary result of interpretation of the peak
factor.

We believe that the a value recovered from a
short-period teleseismic displacement record cor-
responds to the amplitudes of acceleration pulses
produced by failure of individual asperities. As
was shown by Gusev (1989), these amplitudes are
proportional to local stress drops Ar of these

asperities (averaged over the asperity area).
Therefore our results indicate that the distribu-
tion of A7 of individual asperities can have a
power-law tail with a = 2.3. This is the main
result of this section.

Note that A7 =7, — oy/k;, where 7_ is actual
asperity strength and o, is (residual) fault fric-
tion. If friction were zero, the a value would
dcscribe the asperity strength distribution. Dur-
ing the theoretical treatise below we shall set
o= 0 for simplicity.

Theoretical estimates of «

As we have found empirical estimates of expo-
nent @, we could try to make some conclusions
on an earthquake fault structure if we know the «
values for different models of this fault. In this
section we shall try to derive such theoretical «
estimates. Generally speaking, the accurate theo-
retical way of determining the « value for a
realistic multiasperity fault model could consist of
the following steps: (1) assume some reasonable
rules governing the relative asperity location over
the fault and their strength distribution, including
the distribution law (e.g. power law) for a single
asperity, two-point correlation function, three-
point correlation and so on; (2) for a numerical
model, simulate a fault according to the rules; (3)
load the fault by remote stress and simulate and
record a history of its failure; (4) repeat (1)-(3)
for different sets of rules; and (5) sort out a class
of histories which look realistic, resulting in a
judgement of the actual fault structure.

Realization of such a program is far outside
the scope of the present paper; rather we shall
carry out a very preliminary study based on sim-
ple examples. Instead of specifying random pat-
terns by their correlation properties we shall as-
sume certain deterministic structures. Since we
will employ essentially the ideas of the renormal-
ization group approach, our structures will be
hierarchical. In particular, we shall discuss the
hierarchical pattern of grids and the hierarchical
pattern of clusters. In both cases, initial construc-
tion is a multiasperity fault regularly covered by
asperities of similar size and shape; their strength
however varies.



Hierarchy of grids

Fukao and Furumoto (1985) proposed that
barriers on a fault are linear features which form
a hierarchy of grids of different strengths: the
larger is the cell of a grid, the stronger are the
constituent linear barriers. Resistance of linear
barriers to load was specified as “barrier height”,
equivalent to barrier width. The problem of bar-
rier strength was not discussed at all, and we may
believe that in the described model, local barrier
strength (critical stress) is the same for all barri-
ers, narrow and wide. Alternatively, one may
assume varying barrier resistance to be produced
by different barrier critical stress at constant
width, or, in a general case, by some combination
of both.

One of the main ideas of Fukao and Furumoto
(1985) is that earthquake rupture grows by self-
similar stages, and that instantaneous rupture
size at each stage coincides with one or more
cells of the corresponding grid. The perimeter of
each cell is assumed to be broken in a near-criti-
cal mode; this explains why rupture neither al-
ways stops at some small cell size nor always
propagates to infinity, but instead stops with a
nearly constant probability at each successive
stage producing a realistic frequency—magnitude
relationship. Note that the “maximum magni-
tude” frequency-magnitude relationship which is
specific for the near-source area of a characteris-
tic earthquake (Wesnousky et al., 1984), suggests
that in many cases rupture growth may be near to
supercritical up to its final size. If this mode is
typical, the results presented below can describe
certain marginal cases.

Now let us try to obtain some information on
the « value (eq. 16) from crack mechanics consid-
erations. We shall proceed as follows: (1) we shall
assume that any fault patch fails near-critically,
and shall determine the proportion of fault sur-
face which must be occupied by barriers for
patches of a given size; (2) using this result for
patches of different sizes, we shall determine the
statistical distribution of fault surface elements
with respect to their strength; and (3) we shall
apply the resulting exponent of the power law to
the strength values of asperities. To start with, we

consider the condition of failure for a square cell
of some definite side 2L surrounded by a square
strip barrier of width D < L, whose strength is
much above the strength of its surroundings. The
state of the perimeter barrier is critical when
relevant conditions of failure are fulfilled, e.g. it
may be loaded by a stress equal to the barrier
strength o,. We need to relate such “external”
parameters as D, L and remote stress o, with
certain “inner” parameters which determine the
conditions of failure. Our main problem is that
we do not know either the adequate failure crite-
rion, or, hence, the relevant inner parameter. In
crack mechanics, various failure criteria are in
use, and with each of them different results can
be obtained. Actually, the situation greatly sim-
plifies, as will soon be seen.

Dropping all factors of about unity, for a
Barenblat-Dugdale type model of a square shear
crack of size L (friction is set to zero for simplic-
ity) we may write (see e.g. Rice, 1980):

ola=olL=K*/u=G=a.h (25)

where a is the cohesion zone width, K is the
stress intensity factor for equivalent Griffiths
crack (at @ = 0), p is the shear module, G is
energy consumption rate, and A is the critical
displacement defined by the condition that shear
traction at fault wall drops from o, to zero (or to
friction stress) when shear displacement over-
grows h.

Now we can consider different cases, when
different inner parameters are assumed constant.
In particular, (1) if a is a material constant (inde-
pendent of L), g, a L'/%; (2) if o, is a material
property (elastoplastic model), @ o L; (3) if h is a
material constant, then ¢ « L — I and o, a L; (4)
if K (or G) is a material constant, then all cracks
of a size below some L, stop and all cracks of a
size above L, run to infinity, thus this assumption
is inadequate for the problem under study.

To relate these general considerations to our
problem we shall make the somewhat arbitrary
assumption that in the critical state, the a value
coincides with barrier width D. Of course D
cannot be smaller than a; but the opposite is
possible; in other words, the strong strip-barrier
can fail not as a whole but in steps (one substrip
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after another). We shall assume that our barriers —1 gives h=const, y=0 gives D = const, and
are marginally strong and fail in one step. Thus y = gives o, = const). Now (26) gives:

a =D, and for a given L: 0, & L1/ o §1/22+) (27)
Iy sl 5
o D =0 L =o.h =G = constant (26) i
) ) where S, is cell area, and also:
Consider the generalized case D ao. cover-

ing all three reasonable versions discussed (y = D a L7 (28)
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Fig. 1. Hierarchical grid-like multiasperity structure. Case of D o L%, y =2 and 7 a L%, Shading of an asperity symbol reflects
asperity strength.



For the value of area S, = 4DL of the perimeter
barrier of the cell, this gives:

Sb o [CRT2In/2+y) o St(;l +¥)/(2+y) (29)

Let us try now to determine the fraction of
fault area of which the strength is near to o..
Following again the reasoning of Fukao and Fu-
rumoto (1985) and of Gusev (1989), we assume
that patches of size S, form a grid covering the
whole surface. Then taking in account that each
patch “owns” half of its perimeter, for the ratio
of an area of barriers of strength o, to the area
of patches we obtain:

p(0;) = Sp/28. xS/ ag? (30)

for any y < .

As was explained in detail in Fukao and Furu-
moto (1985) and in Gusev (1989), there is wide
evidence indicating that there exists a whole hier-
archy of barrier grids on natural faults, and one
can believe that in grids with larger cell size their
perimeter barriers are of greater strength. Hier-
archically, this makes discrete o, values to form a
geometric series, whereas fractions of fault area
which correspond to these o, values follow eq.
30. Note that the value of p is an equivalent of
probability. We must emphasise that eq. 30 cov-
ers cases of constant A, constant a, and all inter-
mediate ones but the case of constant o.. This
case is specific; it means that all barriers are of
the same local strength, leading to a delta-like
asperity strength distribution. We consider this
case as contradicting observations and shall not
mention it further. We can conclude that eq. 30
must be valid for a rather wide class of fault
models.

Now we have to pass from the probability
value p(c.) to the (complementary) distribution
law P(c,). Note that if the probability density of
x is a power law with exponent e, the correspond-
ing complementary distribution law p(x) = Pr (x’
>x) will be a power-law with exponent € — 1
because of integration, Meanwhile, if the proba-
bility of values of x is represented by atoms
distributed along the x-axis according to geomet-
ric series, and the weights of these atoms follow a
power law with exponent e, a (step-like) distribu-

tion law will have the same exponent e. The
proof is trivial, and was given in Gusev (1989).
Our case is evidently the second one; thus P(a,)
o o 2. Therefore, the assumption of hierarchical
linear barriers failing in critical mode can be
realized by a fault strength distribution of a spe-
cial kind—a power law with exponent 2.

In order to apply this result to a multiasperity
fault we may follow the reasoning of Gusev (1989)
and assume that the average local fault strength
of o, can be approximately realized by a weak
surface covered by asperities of strength 7, with
filling factor k;, so that o, = k. A strong strip
or linear barrier is replaced now by one or more
rows of asperities (see Fig. 1 for example). The
results concerning the o, distribution can be
transferred to the 7 distribution giving at last:

Pr(v'>7)=P(r) ar? (31)

which is the result we sought for. It coincides
with a similar result of Gusev (1989) which was
derived, however, for a less general case: all
barriers were assumed to contain only one row of
asperities.

Hierarchy of clusters

To create an example of clustered hierarchical
structures we shall follow the general approach,
due to Fournier d’Albe, described in Mandelbrot
(1982) in connection with fractal stellar clusters.
The construction procedure for fractal-type struc-
tures which is applicable in this case starts with
fixing the lower fractal limit (smallest scale or
grain size) and repeating construction (or elimi-
nation) of substructures, multiplying their size,
step by step, up to infinitely large ones. Our
particular construction mode is as follows. At
step 0, minimal strength 7, is ascribed to all
asperities. A repeating pattern is chosen, which is
an M X N box containing K black and MN — K
white cells. We cover all the surface by replicas of
this pattern and ascribe strength 7, > 7, to all
asperities marked black (forgetting their old
strength value). Step 1 is ready. Then we enlarge
the pattern up to the size M? X N?, so that old
black cells are replaced by black blocks of M X N
size. Covering the surface by replicas of the en-
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larged pattern we ascribe strength v, > 7, to all
asperities with “old” strength 7, covered by each
black block. Step 2 is ready, and the way of
induction for following steps seems clear. Figure
2 presents an illustration of the resulting con-
struction for M X N=2x3 and K= 3.

Therefore all asperities do not form a fractal
pattern, but for their subset containing all asperi-
ties with a strength above some particular strength
level, the pattern is fractal for some range of
scales, and the higher this level, the wider is the
range. An important parameter of our construc-
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Fig. 2. Hierarchical clustered multiasperity structure. Example with M X N =6, K =3 and « = (1.5, Shading of an asperity symbol
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tion is k = K/MN, which describes “rarefaction”
of strong asperities at each step. In our example,
k=3/(2x3)=0.5. The relative (in respect to
step 0) density d, of asperities considered at step
k is therefore equal to x*. After examination of
Figure 2 we may assume that for large enough
loads, fault resistance will be localized in certain
clusters, and gaps between them will easily yield.
We can assume that during rupture growth over
such a fault, these clusters will form temporary or
final boundaries for this rupture. Consider some
more or less isometric gap and note that it always
contains inside itself some cluster of lower scale.
Assume that this gap is occupied by rupture, and
that the inner cluster fails in a near-critical mode.

One can roughly estimate the critical load over
the cluster using the results of Das and Kostrov
(1986) for a circular asperity of radius R, in the
centre of a circular cut of radius R. Average
stress over this asperity (assumed to be near to
the critical one @) is:
o.=o{R/R,) (32)
In a fractal structure, an equivalent of the R/R,
ratio is constant, so that o, o o,. (This result is in
fact general and does not depend on our use of
the particular model of Das and Kostrov, 1986.)
The average number of asperities which actually
resist in the central cluster is not easy to esti-
mate; it is bracketed between the total number N,
of asperities in the cluster and the number of
only the strongest asperities N, = Nl.tc". The first
limiting case is improbable; it leads actually to
constant strength of all asperities. The second
limiting case seems to be probable, but with no
guarantee until actual modelling. Considering this
case as the limiting one we may note that it
assumes the minimal number of resisting asperi-
ties and thus the maximum strength of them;
therefore, this limiting case gives a lower bound a
for the value of a that is specific for the pattern
under study. Let us determine a.

Since the average o, over the central cluster is
constant, the total force loading the cluster is
N .§,. Tt is distributed over the N, strongest
asperities and loads each of them with the aver-
age stress:

7= (N/Ny)oki' = oki'k™™ (33)

Since the average relative density, or “probabil-
ity” of these asperities is x*, this gives p(7) a7,
leading, for already discussed reasons, to:

P(7)ar! (34)

Therefore, a=1 for a clustered structure of this
particular kind. This lower bound estimate of « is
preliminary, and must be confirmed by simula-
tion. As for a proper, we found no way to get
even a preliminary estimate; direct simulation is
needed. One may conjecture, however, that this
value will be <2, because a clustered structure
“uses” asperity strength for resistance less effec-
tively than a grid structure.

The presented results describe particular mod-
els, and it is not clear whether they can be
generalized. They may reflect, however, some
general properties of hierarchical asperity distri-
butions. One can suspect that adding randomness
to the grid model never improves its resistance;
thus, for more general grid models, e < 2. There-
fore, as a preliminary result we may guess that for
clustered and grid-like hierarchical models in
general, when a near-critical growth mode is as-
sumed, « is bracketed between 1 and 2, with
lower values for clusters and higher ones for
grids.

Another problem is the relation of the dis-
cussed model to nature. Important evidence that
supports an idea of grid-like structures is pre-
sented in Fukao and Furumoto (1985), but it is
not conclusive and one can continue to consider
all the construction as artificial. We can mention
in this relation that purely random fractal models
of topography demonstrated by Mandelbrot
(1982) include many “lakes™ (that is, depressions
circled by some ridge) and the sizes of these lakes
are power-law distributed. Mandelbrot even
guesses that lakes cover the surface so that its
remainder is of zero area (and of a fractal dimen-
sion between 1 and 2). This can mean that a
certain grid of ridges of a strength function can
be formed under rather weak assumptions.

Note that we consider here a fractal strength
function. This point of view is not to be confused
with another one, in which a fractal stress or
stress drop function is assumed (von Seggern,
1981; Andrews, 1981).
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General discussion of « estimates

Let us compare different estimates of the ex-
ponent « of the asperity stress drop distribution.
Empirical data for the near field (Gusev, 1989)
indicate that a is close to 2 based on the follow-
ing observations ordered by their relative weight:

(1) @ =2 provides good agreement between
two empirical estimates of average/median Ar,
one of which is based on the maximum value of
an average Fourier acceleration spectrum and the
other on the acceleration peak value.

(2) @ =2 provides realistic (fast) growth of
near-source peak acceleration with a magnitude
in the range M =4 to 6.

(3) a = 2 provides independence of peak accel-
eration of fault distance up to distances near to
the source width.

One can note, however, that all this evidence
does not constrain « strongly, and in terms of a
range, indicate, roughly, a = 1.7-2.5.

Far field data presented in the first part of the
present paper use fully independent information
on a. They lead to the interval estimate a = 2.2—
2.6, which may be interpreted as a = 2.3. As all
these estimates are of limited accuracy, we may
conclude that the empirical « value is near to
2-23.

Theoretical results were obtained for two par-
ticular deterministic asperity patterns, and one
may doubt whether any generalization may be
done. In both cases, some type of hierarchical
structure was assumed, and the condition of a
near-critical growth mode was applied to derive
estimates of «. This value was 1 or greater for the
studied clustered barrier structure, and 2 for the
grid-like barrier structure. One can suspect that
for an unstructured (delta-correlated) asperity
distribution either « is equal to 1 or less, or the
near-critical mode of growth normally cannot be
achieved at all. As real asperity patterns can
correspond either to a near-critical or a supercrit-
ical mode of growth, any theoretical estimate of
the kind described actually provides the lower
bound.

Now we can proceed to a comparison. The
first observation is that ranges of empirical and
theoretical estimates generally overlap. This is an

implicit test of the whole approach (which is far
from being a strict one), and this test is success-
ful. The numerical correspondence of a = 2 for a
particular grid model and of empirical &« =2 to
2.3 is of less importance. The studied grid model
is somewhat artificial, and a lower value of a, say,
a = 1.5, can be expected in the model if random-
ness and discreteness will be accounted for,
whereas @ =2 to 2.3 may be the actual value in
nature. The difference between these values can
be produced by a mainly supercritical mode of
growth of real ruptures. Nevertheless, our results
generally agree with the idea of Fukao and Furu-
moto (1985) on the existence of a hierarchy of
barrier grids on a fault surface.

Caputo and Console (1980) noted that distri-
bution of empirical stress drop in two samples of
earthquakes (for California and Japan) can be
described by a power law, with exponents of 1
and 0.5, respectively. Inspection of corresponding
figures shows that the tail part of the distribu-
tions is described only poorly, and greater values
of a, say, @ = 1.5 to 2, can be needed to describe
this tail. Though this information is not definite
enough, it induces a general and interesting ques-
tion: what kind of relation can one expect be-
tween the asperity stress drop distribution over a
fault and the distribution of average (over rup-
ture area) stress drop values of individual earth-
quakes. To derive such a relation we may reason
as follows.

Assume the whole fault surface to be divided
into patches of a size about 1 km, and consider
the statistical distribution of all patches in respect
to their average critical stress drop Ar. Choosing
some threshold Ar, we may sort all patches into
“asperities” with stress drop A7 > A, and “weak
patches” with A7 < Ar,. We may guess that na-
ture does not keep the discussed distribution
bimodal, because no reasons are seen for any
natural threshold value. Much more likely is that
the Ar distribution is common for all patches, so
that a threshold value is fully arbitrary. If so, we
may assume the A7 distribution of patches to be
the power-law one with some exponent a. Since
the average stress drop value is, in our represen-
tation, an average over several patches, its distri-
bution will correspond to that of a sum of inde-



pendent power-law variates, so that all results
concerning such sums (mentioned above) are ap-
plicable. In particular, if a for asperity stress
drops is less than 2, a for earthquake stress drops
will be the same.

Conclusion

Application of the multiasperity fault model of
Gusev (1989) to the interpretation of short-period
teleseismic amplitude and spectral trends was
successful. This lends additional support to this
model and also enables one to compare an empir-
ical asperity strength distribution with theoretical
ones. The most important results of this study
are:

(1) Slopes of log-log amplitude and spectral
level vs M, for teleseismic short-period records
(frequency band around 0.7 Hz) are near to b =
0.35 and B =0.39, correspondingly, for suffi-
ciently large earthquakes (log M, > 26).

(2) The slope of the record peak factor (peak
to rms-amplitude ratio) is near to p=0.13, in
pronounced contradiction with the Gaussian pro-
cess record model (which predicts p = 0.03).

(3) The value B =0.39 of spectral slope is in
contradiction with 8 =1/3 of the @2 model; it
is shown to agree with predictions of the multi-
asperity model if one assumes slow growth of
asperity size 2R, with magnitude. If 2R, o M,
then B=1/3+6 and empirical § estimate is
0.06. This result generally agrees with the ob-
served f... vs M, trend.

(4) Interpretation of a peak factor trend can be
based on the representation of a record as a
random pulse process with a heavy-tailed pulse
amplitude distribution. A simple assumption of a
power-law distribution leads to a preliminary esti-
mate of exponent « of this distribution; « is
between 2 and 2.6, and « = 2.3 is the preliminary
point estimate.

(5) The same « value describes the distribu-
tion of average local stress drop values of individ-
ual fault asperities. This agrees reasonably with
the near-field estimate of a =2 from Gusev
(1989).

(6) The a value for strength and/or stress
drop is determined for two deterministic hierar-

chical models of a multiasperity fault. The first
model is the “discretized” analogue of the hierar-
chical grid model of Fukao and Furumoto (1985),
which gives @ = 2. The second model is a hierar-
chical cluster model analogous to the stellar clus-
ter model presented by Mandelbrot (1982), which
gives a = 1.

(7) General correspondence may be noted for
« ranges from empirical data (e =2 to 2.3) and
from theory (a=1 to 2). The difference may
reflect the fact that in the theoretical derivation
we assumed a near-critical mode of source growth
corresponding to a Gutenberg-Richer type
power-law moment-frequency relation, whereas
actually the characteristic earthquake model and
maximum magnitude (Wesnousky et al., 1984)
moment—frequency relation may be more ade-
quate, indicating a supercritical mode of growth.
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