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Abstract. To study statistical properties of the near-source radiation field, 35 horizontal
accelerograms were selected, recorded at distances R < 110 km from five M > 7 Mexi-
can earthquakes. For each one, the maximum-amplitude segment, assumedly containing
direct S waves, was selected by an automatic procedure. Then two parameters were
determined for this segment: the peak to rms amplitude ratio, or peak factor PF, and the
slope K of the dependence of PF on log duration. These two values were compared to
the corresponding values expected for a simplest stochastic record model, of a segment
of the stationary Gaussian process. For about 40% of the records, both parameters show
clear (above 20) deviations from this model. Another record model was also tested, of
quasi-stationary Gaussian process (with time-varying rms amplitude). With this end, the
original records were "stationarized," that is, modified to attain nearly constant rms
amplitude, and then analyzed in the same manner as the original ones. However, for a
distinct fraction of records, deviations persisted. The type of the deviations is character-
istic for a "heavy-tailed" amplitude distribution, with the enhanced probability of large
peaks. The degree of expression of this phenomenon seems to decay with distance. This
observation suggests that source radiation, as it is generated at the fault, often is inher-
ently non-Gaussian (heavy-tailed), but because of the scattering and multipathing, it
quickly loses this property. One can expect this picture not to be specific for Mexican
earthquakes only. From the viewpoint of stochastic strong motion simulation, the results
imply that the PF value calculated from the stationary Gaussian model can underestimate
average peak acceleration, on the average, by some 25%. In an analysis aimed at the
recurrence of rare peaks, the underestimation may be even larger: among 35 records
studied, five have peak factors more than 50% above the values expected for the station-

ary Gaussian model.

Introduction

The statistical properties of high-frequency radiation from
earthquake sources were studied during the last decades
mainly from the practical viewpoint, in order to provide a
sound basis for estimates of future strong motion. Hanks
and McGuire [1981] demonstrated that the amplitude dis-
tribution of many accelerograms is close to Gaussian, and
this gave certain grounds to the accelerogram model as a
segment of the stationary Gaussian process (already used in
mostly a priori manner in earlier studies). This model was
widely applied to relate peak acceleration to rms accelera-
tion [e.g., Hanks and McGuire, 1981; Gusev, 1983; Boore,
1983]. Although this approach may be generally acceptable
for engineering purposes, and even adequate for a large
percent of accelerograms, some near-source records clearly
show more complicated behavior. First, the acceleration
amplitudes vary during the "source-related" maximum phase
of an accelerogram, which, for large earthquakes with
sufficiently long source duration, may usually be associated
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with the direct (or somewhat distorted by forward-scatter-
ing) S waves, radiated from the source. The pattern in point
is not the evident random fluctuations, rather it is the
gradual change in average power, seen, for example, as
subevents of considerable duration (5-10 s or more). Sec-
ond, one can sometimes note short, powerful individual
acceleration spikes. Both these conspicuous features of real
accelerograms may bear important information on the fine
structure of a rupturing fault. In particular, statistics of
acceleration maxima can reflect statistics of local stress
drop, and each prominent "direct-S-wave" acceleration peak
may be formed by the failure of a single, strong asperity
[Gusev, 1989].

We have already noted that the statistics of acceleration
amplitudes are also relevant for the strong motion predic-
tion. When a calculation scheme for such a prediction uses
the spectral representation of a signal, it usually employs a
theoretical value of the peak-to-rms acceleration ratio, that
is, of the peak factor PF, in order to pass from the rms to
the peak value. Usually, PF values used are based on a
certain statistical model of a record, so that an inadequate
statistical model may bias the estimates of peak acceleration
even if all previous steps in its calculation are correct.
Therefore the clear understanding of real acceleration
amplitude statistics has obvious practical meaning as well.
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On the basis of the results of the visual inspection noted
above, I anticipate two kinds of deviations from the simplest
stationary Gaussian model. The first is the modulated or
quasi-stationary Gaussian process, with time-varying vari-
ance (or rms acceleration). Such a process is locally Gaus-
sian, but stacking of amplitudes from subsegments of dif-
ferent variance produces a non-Gaussian distribution for the
entire analyzed segment. Another, more interesting alterna-
tive is an inherently non-Gaussian process. Specifically, the
presence of intense spikes suggests that the appropriate ge-
neric alternative model must have a "heavy-tailed" ampli-
tude distribution, with uigher-than-uausswn probability of
large deviations. (An example is the pulse process with the
power law pulse amplitude distribution proposed by Gusev
[1989]. To discriminate between these two alternatives is an
important issue. To test the model of the quasi-stationary
Gaussian process, I will try to reduce observed signal to
time-independent variance/rms amplitude, "stationarize" it.
If the result is near to the Gaussian process, this would
indicate the quasi-stationary model as the preferable one. In
the opposite case, one should resort to an intrinsically non-
-Gaussian (heavy-tailed) model. I will not go into any partic-
ular non-Gaussian models here and will restrict the discus-
sion only to the preliminary stage of data analysis. My main
aim is to show that the simple Gaussian model is often
inadequate and, generally, cannot be saved even if extended
to allow time-varying rms amplitude.

I shall analyze only the maximum segment of an accelero-
gram, because (1) it contains direct source radiation proba-
bly reflecting the rupture process and (2) it is the most
energetic part, important for applications. To obtain the
record durations sufficiently long for any meaningful statisti-
cal analysis, I use records of large-magnitude earthquakes,
with several seconds or more of source-related ground
motion present.

Theory

Initially, I introduce the technique of the statistical analy-
sis which then will be applied to the accelerogram data. The
whole approach is based on extreme values; this kind of
technique is well adjusted to our case: checking the Gaus-
sian model against a heavy-tailed alternative. The parame-
ters and tests applied are based on the probabilistic back-
ground due to Cartwright and Longuet-Higgins [1956] and
Gumbel [1958]; see also [Solnes, 1992], whom I follow in
the subsequent presentation. For a general stationary Gaus-

sian process with the power spectrum S(f), they give the-

following expressions for the important time-domain param-
eters of the process, namely, the frequency of maxima y and
the bandwidth parameter €2 (0 <e? <1):

B = m4/ my;
where m;, i = 0, 2 and 4 are the spectral moments:

& = 1-myimym, @

m;= J fiS(dr. ()

The p parameter is the mean number of maxima per unit
time, so that the value of ,u‘l is the characteristic time inter-
val between adjacent maxima of the process (note that "max-
ima" here are local maxima, never assumed to be positive).
The €2 value characterizes the relative bandwidth of the pro-
cess: it is near zero for a narrow-band signal and approaches
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unity if the bandwidth is very large. To estimate the empiri-
cal u and €2 values, I replace the power spectrum in (2) by
squared modulus of the Fourier spectrum of a record. The
evident alternative is the direct time domain determination of
w; however, trying this approach, I met with large underesti-
mation of u: a significant percent of maxima is lost. This
loss is the result of working with digitized data (sampling
frequency of 100 Hz was used), whereas the theory used has
been derived for continuous signal. Using interpolated signal
with artificially increased sample rate, I could improve the
agreement between the result of integration in frequency
domain (which I consider correct and use in the following)
and of the direct count in the time domain but considered
this unnecessary.

Now let the process variance o2 (01 g, = 0) be unity,
then the probability density of maxima is given by

14

[exp(_)+<pe p(_ﬁ) I exp(__”z)du] ©)]
(2m 262 2 I 2

px)=

where ¢ = (x/e)(1-e%)'? (see Figure la). Notice that at ¢
= 0 (infinitely narrowband), p(x) degenerates to the Ray-
leigh density and at €2 = 1 (infinitely wideband) degenerates
to the Gaussian one. To facilitate the comparison of various
distributions by eye introduce the complementary cumulative

Co

distribution function (CCDF) Q(x)=1-P(x)= J p(wdu, and

take logQ and x? as the new variables (see Flg 1b). At e2=0
(Rayleigh-law case), the logQ versus x? relationship becomes
exactly linear in this scale (which is, essentially, the "expo-
nential law probability paper").

At unit variance, or unit rms amplitude, the largest abso-
lute extremum over a segment is identical to peak factor PF
or the peak to rms amplitude ratio. To estimate PF, I must
consider the set of extrema over a segment of duration 7. In
our actual case of sufficiently wide bandwidth (e? is estimat-
ed to be near 0.8 below), I can assume the independence of
extrema, because the correlation time of the sequence of
extrema is of the order of (bandwidth)!. (However, it must
be accounted for in the narrow band case, for example in the
estimation of response spectrum, when the number of inde-

. pendent extrema is about 27X (bandwidth) rather than

2T X (central frequency) [Gusev, 1990].) Thus I ignore the
statistical dependence between successive extrema, and
assume N = 2uT to be the number of independent extrema
and also assume N to be large. Then, for squared PF, the
(cumulative) distribution function mean and variance are

P(PF?) = exp(-N, 4 exp(-PF?*/2)) ©)
E(PF?) = 2(InN g +Y) &)
A(PF?) = 27%/3 ©)

whereas for PF proper
E(PF) = (2I0Nyg)" (—ENV—; o*(PF) = 1sz )
where y ~ 0.5772 is the Buler’s constant and N, = (1-£%)%N.

The effect of the correction factor (1-£2)% can be seen as

the asymptotic relative shift to the left of curves of Figure

1b at small Q, with respect to the straight line for 2 = 0.
The above expressions suggest several ways to compare

observations with theory. In particular, one can correlate the
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Figure 1. (a) Distribution density p(x) (3), for values of maxima of a realization of a Gaussian
process with zero mean and unit variance, for various values of the bandwidth parameter €2. The
case €20 is the narrowband one; then all (local) maxima are positive and the probability of a
negative maximum approaches zero. The case €21 is that of increasingly broad band. In this case,
the high-frequency component produces very frequent local maxima, whereas the low-frequency
component produces long-period oscillation that makes these maxima to be positive or negative with
equal (asymptotically at 2 1) probability, as shown by the symmetrical bell curve for e2=0. (b)
Corresponding complementary distribution functions (CCDF) Q(x). Note the change of the abscissa

scale.

observed PF?, denoted PF 2, with its theoretical mean
value, PF,?; and one also can compare the PF,? versus InN
trend with the almost linear PF,2 versus InN relationship (5)
as well. With this latter end, one can split the analyzed
segment into, for example, 2, 4, 8 and 16 equal parts,
determine PF,? for each subsegment, and then estimate

K = d(PF 2)/dlnNeﬂ: by linear regression. The theoretical
estimate of K, denoted K,, can be obtained by linear approx-
imation to (5) treated as a PF? versus InN relation; practical-
ly, K, is very near to 1.95. Use of two independent parame-
ters similtancously enables one to improve the reliability of
results.

To construct normalized values based on PF and K, I
reduce them to zero mean and unit variance obtaining the
new parameters PF and 0K:

8PF = (PF2-PF?)Io(PF’) @
0K = (K,-K)/o(K). ' ©®)

For the calculation of 6PF, (5) and (6) immediately provide
the mean and variance of PF? for the null hypothesis. For
0K, the variance of K can easily be estimated during the
regression procedure described above, if one replaces the
value of the residual variance in this procedure by its theo-
retical value (6) for the null hypothesis; the result is ¢(K) =
0.6151 for my actual choice of 1+2+4+8+16 = 31 PF
values. The way to find the mean value K, has already been
explained.

The normalized parameters PF and 6K are convenient
for the preliminary step of data analysis but cannot give
accurate significance levels because the distribution defined
by equation (4) is different from Gaussian. If such signifi-
cance value is needed for an individual anomalous PF value,
one can directly use (4); for K, however, the accurate distri-
bution is not available. The particular case considered below
is when n out of m PF values are large and corresponding
significance values are known (based on evaluation of (4)).
As usual in such a case, one can employ the binomial distri-
‘bution to find the joint significance.

The two introduced parameters will be inevitably
strongly intercorrelated because a large PF value will make

K also large; whereas I would prefer the parameters to be as
independent as possible. To reduce this unwanted depen-
dence, I substitute the PF value with its estimate from data.
Note that in calculation of K, the PF value would appear
several times: for the full segment and for all subsegments
covering the time moment of the peak. In all these positions,
I replace the true PF value by its estimate through the sec-
ond largest peak, with the corresponding correction of
+2In2, equal to the mean difference between the rms-nor-
malized largest and the rms-normalized second largest. This
modification, applied for all analyzed records, markedly
reduces the correlation between dPF and 6K.

As T assume the data to be nonstationary, I can expect
that correlation takes place between relatively distant extre-
ma, reflecting the temporal structure of "modulation." This
correlation must disappear if stationarity is genuinely recon-
structed; this gives us a means to qualitatively check the
efficiency of the "stationarization" procedure.

Data Selection and Processing

Near-source records of large-magnitude earthquakes accu-
mulated by Mexican accelerograph networks [see, e.g.,
Singh et al. 1990] provide an appropriate data set for this
study. I used the CD-ROM [Seekins et al. 1992] as the
immediate data source for acceleration data files. In the data
selection (Table 1), I chose all reliable horizontal compo-
nents for all five large (M > 7) earthquakes covered by the
data set, at distances up to 110 km. The distances given are
from the source center, in the case of the September 19,
1985, event - from the center of the nearest subevent.

The data processing consisted of the following stages:

1. Apply high-pass filter with the cutoff of 0.4 Hz. This
is the practical means to secure zero mean of the analyzed
data. The choice of the cutoff value, be it sufficiently small,
1s more or less arbitrary.

2. Determine the data window. The aim of this stage is to
isolate probably source-related, maximum segment of the
record. After several trial and error steps, a fully automatic
windowing procedure was designed, giving results which
look reasonable, producing limited duration differences be-
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Table 1. Strong Earthquakes and Recording Stations

Event Date Epicenter Depth, M,  Station
°N °W km (Distance, km)

March 14, 1979 17.46 101.46 20 7.6 SICC(95), VILB(98)

Oct. 25,1981 17.75 102.25 16 7.3 SICC(21)

Sept. 19, 1985 18.14 102.71 16 8.1 CALE(7), VILE(44),
ZACA(44), IN12(64),
INMD(64), UNIO(68),
PAPN(102)

Sept. 21, 1985 17.62 101.82 16 7.6 AZIH(36), PAPN(63),

UNIO(73), ZACA(95),
INMD(101), SUCH(108)
April 30, 1986 18.40 102.97 21 7.0 CALE(48), ARTG(75)

Data listed are taken mostly from Singh et al.[1990] in whose work
additional details can be found.

tween components of the same record, and making both
component durations not too different from the inverse-cor-
ner-frequency durations used by Singh et al. [1990]. The
procedure consists of two steps: (1) take the absolute value
of the record and smooth it by the low-pass_ filter with the
cutoff of f,, = 0.15 Hz and (2) define the data window as
a segment where the above function exceeds 40 % of its own
maximum. Such an operation excludes manual adjustment
which can unintendedly bias results. (Using the threshold
value of 30% changes the results only marginally.)

3. Cut out the segment within the data window; normalize
it to produce unit average variance. Determine observed and
theoretical u, p,, and p,.

4. Make a sequence of squared extrema. Find their corre-
lation function using the sequential number as argument.

5. Form CCDF of data. Find PF, , PF, and 6PF.

6. Subdivide the initial segment into 2, 4, 8 and 16 sub-
segments and find the PF value for each one. For the full
segment, and for all subsegments covering the time point
where the full-segment PF is situated, replace their PF value
by its estimate through the second largest peak. In calculat-
ing subsegment PF, normalize each peak by the rms value
determined for this particular subsegment. (Alternative nor-
malization, by the whole-segment rms value used on each
segment, does not change the results significantly.) Find K,
K, and oK.

After application of the above procedure to the original
records, they were "stationarized,” and the procedure was
applied again to the thus modified data (less step 2, the data
window of the original record was preserved). The statio-
nparization procedure applied is essentially that of the auto-
matic gain control. I determine the signal modulus, smooth
it in the frequency domain using a certain upper cutoff f
and then divide the input record by its smoothed modulus.
The critical issue here is the choice of f,,. Use of large f;,,
(short time constant) results in "over-stationary” output; its
amplitude distribution has unrealistic, over-suppressed tails,
which are "lighter" than in the Gaussian case. In the oppo-
site case, with too small f,,, (too long smoothing time), I
simply do not attain the goal of stationarization.

Unfortunately, no ready theoretical means are known to
me to formalize this choice (whereas its effect on the con-
clusions of the analysis may be radical). Below I applied a
new, specially designed approach, based on the idea that, as
is well known, the estimates of the "center" of distribution
that are based on the median are not very sensitive to
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heavy-tailed data contamination. Thus, if, in the case of the
genuine quasi-stationary process, I would tune the f;,, value
in such a manner that the median dPF value over the whole
data set would be equal to zero, I could believe that this f;,,
value is the adequate one for performing "true" stationariza-
tion. Thus the checks applied to thus modified data and
aimed at finding a non-Gaussian behavior would give a
negative result for this case, and if I find the opposite, I can
consider the non-Gaussian behavior to be successfully identi-
fied. Such an identification technique is rather reliable, be-
cause the procedure described is in fact notably conserva-
tive. To make this clear, notice that if the heavy-tailed
component is present, its effect on the calculation on the
median 8PF of modified (or raw) data is to shift this median
to positive values. To suppress this effect, a higher-than-
adequate value of f,,, will be found and applied in the pro-
cess of the tuning explained above. As a result, too much
stationarization will take place, and "non-Gaussian" peaks
will be additionally suppressed. Thus the hypothesis testing
will take place in the conditions of this additional suppres-
sion of peaks. If, despite this bias, the null hypothesis will
be rejected, this will take place on the lower significance
level (i.e., with more certainty) than the level calculated
formally.

Below I shall indeed reject the hypothesis of quasi-sta-
tionary process using the described procedure. After rejec-
tion of the null hypothesis, it will be reasonable to decrease
somewhat the f,,, value used, as definitively overestimated.
However, it was difficult to determine the accurate value of
this decrease. Based on informal criteria, I reduced the f,,,,
from the value determined in the "tuning process”, to 60 %
of it. This second f,, value was considered as more ade-
quate for determination of real relative proportion of non-
Gaussian records.

Results of analysis

I begin with two detailed examples of the data analysis.
The first one is a prominent case of non-Gaussian behavior.
Figures 2 and 3 show details of the analysis procedure ap-
plied in the identical manner to the original record and to its
modified/stationarized version, correspondingly . Figures 2a
and 3a show input accelerograms (original and modified). In
Figure 2a, one can also see two smooth curves showing
low-pass filtered modulus of signal, multiplied by arbitrary
positive or negative factor. The top curve corresponds to the
modulus obtained using the cutoff frequency f,, = 0.15 Hz;
it was used to define the data window, also shown as verti-
cal dashed lines. The lower curve corresponds to f,,, = 0.06
Hz and was used within the stationarization procedure. Fig-
ures 2c¢ and 3c are the autocorrelation plots for subsequent
squared signal peaks treated as a time series. On Figure 2c¢
one can see, in addition to the trivial central peak, a wide
positive rise; this rise is practically suppressed for the modi-
fied record, showing the decorrelative effect of stationariza-
tion. Figures 2b and 3b show the theoretical and the empiri-
cal CCDF. In Figure 2b, one can see very prominent devia-
tion of the extremal part of distribution from the expecta-
tions of stationary Gaussian case. In Figure 3b, this devia-
tion is somewhat reduced but still is prominent. Figures 2d
and 3d illustrate the relationship between the PF? value and
the number of extrema on a subsegment. For example, the
rightmost point corresponds to the whole segment analyzed,
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Figure 2. Statistical analysis of the original accelerogram of
the September 21, 1985, event at the station UNIO,
component N-S. (a) Time history. (b) CCDF of its squared
extrema. (C) Autocorrelation of extrema. (d) Squared
extremum versus sample size, that is the number of
subsequent extrema on a subsegment. See text for details.

containing about 750 extrema. In the leftmost group of 16
points sitting on the same vertical line, each point cor-
responds to one of 16 equal subsegments. Each of the sub-
segments contains an approximately equal number of extre-
ma, near to 750/16 = 47. As the normalization by rms
amplitude has been done on each segment separately, the
largest (over subsegments of a similar size) maximal squared
extremum somewhat varies for different sizes of a subseg-
ment. The empirical linear fit (giving K, solid line) does
not immediately corresponds to plotted data, it is practically
always more gradual, because, as explained above, in calcu-
lation of this line, I substituted the full-segment-maximum
value by its estimate through the second maximum. This
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Figure 3. Same as Figure 2, except modified ("statio-
narized") version of the same accelerogram. The value
fim = 0.06 Hz was used in the stationarization procedure.
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Figure 4. Same as Figure 2, for the September 19, 1985,
event at the station CALE, component E-W.

empirical fit can be compared to the expected theoretical
dependence (dashed line). Here again one can see clear
deviations from the null hypothesis (when K =~ 2). Another
example (Figures 4 and 5) is the same data for an assumedly
quasi-stationary Gaussian case. One can see that, for the
original record (Figure 4), extremal peak statistics and K
value are again far from expected for the stationary Gaus-
sian case, but now these deviations are almost completely
suppressed by stationarization (Figure 5).

Now consider the whole data set. For the basic parame-
ters of the signal, average values and standard deviations
over the data set are ¢ = 0.81+0.09 and u = 14.2+5.2
Hz. The key data pertinent to the testing of the null hypoth-
esis for individual records are given in Table 2, both for
original data and for modified ones for f,,, = 0.10 Hz. In
Figure 6, I show the 0PF-0K scatter. One can see, primari-
ly, the radical deviation of 6PF and 6K values of original
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Figure 5. Same as Figure 3, for the September 19, 1985,
event at the station CALE, component E-W.
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Table 2. Parameters of Original and Modified (f;,, = 0.10 Hz) Records

Station  Duration, PF PF 0PF K K 0K PF 0PF K 0K
Component s Theo. Orig. Orig. Theo. Orig. Orig. Mod. Mod. Mod. Mod.
March 14, 1979
SICC/N 87 300 328 069 1.84 205 034 2.8 039 169 -0.24
SICC/E 89 3.04 344 100 1.8 249 1.04 300 -0.12 2.00 027
VILB/NE 91 315 310 -0.12 191 138 -0.87 2.76 091 1.8 -0.11
VILB/NW 68 301 305 0.10 1.87 192 0.08 328 0.67 221 0.56
October 25, 1981
SICC/N 13.8 322 333 027 19 238 074 28 -087 203 0.18
SICC/E 16.1 325 3.02 055 19 166 -040 2.8 -1.00 149 -0.67
September 19, 1985
CALE/N 253 3.56 377 0.60 198 242 071 304 -1.35 123 -1.23
CALE/E 30.8 3.61 451 2.8 199 300 194 358 -0.09 252 0.86
IN12/NE 422 372 501 440 199 390 3.11 404 099 259 0.9
IN12/NW 417 3.69 410 126 198 257 095 346 -0.64 216 0.30
INMD/NE 349 3.8 4.8 350 200 452 4.09 418 1.09 2.04 0.07
INMD/NW  36.5 3.8 407 071 200 222 037 330 -147 114 -1.40
PAPN/N 13.8 346 469 391 197 270 118 375 0.80 1.65 -0.52
PAPN/E 11.3 341 343 005 197 290 152 321 -051 198 0.02
UNIO/N 253 350 3.77 077 197 246 078 374 070 1.63 -0.56
UNIO/E 246 351 318 085 197 181 -026 3.09 -1.09 139 -0.95
VILE/N 46.5 355 492 452 198 355 256 374 048 136 -1.00
VILE/E 395 358 6.02 9.12 198 460 426 394 1.00 1.69 -0.48
ZACA/N 394 358 430 222 198 409 341 3.13 -124 1.65 -0.55
ZACA/E 41.8 362 3.8 0.76 199 255 092 411 144 113 -1.39
September 21, 1985
AZIH/N 147 338 4.14 222 19 349 248 337 -0.04 223 043
INMD/NE 30.3 379 437 1.8 1.99 3.12 1.8 428 152 237 0.60
INMD/NW 323 381 475 3.14 199 440 391 385 0.11 2.01 0.02
PAPN/N 74 335 395 1.73 196 299 1.67 3.61 071 237 0.67
PAPN/E 72 338 407 201 196 2.19 0.37 373 096 195 -0.02
SUCH/N 62 2.8 3.15 0.64 1.8 248 1.02 290 005 225 0.68
SUCH/E 95 3.14 6.03 1033 1.92 341 243 531 7.14 237 0.76
UNIO/N 31.1 3.62 6.02 9.03 199 441 407 48 404 292 152
UNIO/E 280 3.53 6.64 1235 198 4.17 356 442 273 194 -0.06
ZACA/N 215 3.34 521 622 195 295 1.62 355 059 237 0.69
ZACA/E 184 332 507 571 1.9 504 504 3.8 157 356 2.64
April 30, 1986
ARTG/N 88 326 306 048 195 1.87 -0.13 273 -126 137 -0.9%4
ARTG/E 11.6 3.34 3.8 143 196 271 122 330 -0.08 160 -0.57
CALE/N 11.3 322 346 063 194 269 122 314 -022 232 0.62
CALE/E 10.8 327 496 542 195 199 0.06 4.04 217 129 -1.06
Average 342 424 278 195 295 1.62 357 050 195 0.00
S. d. 025 097 329 0.04 095 152 060 168 0.53 0.87

Theo., theoretical value; Orig., from original record; Mod., from stationarized record.

records (crosses) from what could be expected with the null
hypothesis. The square plotted on the graph represents +2¢
boundaries, approximately corresponding to 2.3 % quantiles
if one assumes the normal distribution. Acccurate quantiles,
based on (4), are about 3% for PF and between 2.3% and
3.1% for 8K. In the following, I will consider a point anom-
alous if it is outside these boundariés. Sixteen of 35 6PF
values are above 20, against expected about 1 of 35. There-
fore the mull hypothesis (the model of a segment of the sta-
tionary Gaussian process) can be rejected with confidence.
The ratio, (16-1)/35 = 43% is the rough but rather stable
estimate of the fraction of anomalous component. For exam-
ple, shifting the threshold value to 1.50 gives 19 anomalous
cases against about 3 expected for the null hypothesis, mak-
ing practically the same estimate, (19-3)/35 = 47% of
anomalous component. For 6K values, I have likewise 11
points above 20 against 1 expected, and for both criteria
combined, again 16 (now against 2), so that dK parameter
seems less powerful in the case studied; it merely confirms
the conclusions based on 6PF by an independent check.

Now I can test the alternative null hypothesis of the
quasi-stationary Gaussian process. As explained above, to be
on the conservative side, I put this hypothesis in a favorable
position, and specially chose the value of cutoff frequency
f,n(=0.10 Hz) in such a manner that medians of the result-
ing 6PF and 0K distributions are near to zero: they are equal
to 0.11 and 0.02, correspondingly. Even in so tough a test,
five points are outside the "2¢ square” on the plot. Further-
more, two dPF values are above 4¢. In terms of the signifi-
cance value, the three most prominent PF outliers have
probability values 5.5x107°, 3.2x103, and 1.8x1072. If
one considers one, two or three most prominent of these
outliers as anomalous, the significance values associated
with their occurrence within the sample of the size 35 are
about 0.002, 0.007, and 0.03, correspondingly. Therefore
the strongly non-Gaussian component of data still reveals
itself sufficiently clearly even in a deliberately unfavorable
test, and I can now reliably reject the second null hypothe-
sis, that of the quasi-stationary Gaussian process. (To avoid
confusion, notice that ~55% of data, which are "stationary
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Figure 6. Scattergram of two signal parameters: §PF versus
0K. Crosses indicate original records; dots indicate
stationarized records for two values of the filter cutoff: (top)
Jem = 0.06 Hz and (bottom) f,,, = 0.10 Hz. The square is
the +20 field for the null hypothesm

Gaussian” based on the first test, are at the same time "qua-
si-stationary Gaussian" because constant rms amplitude is a
particular case of variable one.)

Again, I can assume the data to be a mix, now of quasi-
stationary Gaussian and non-Gaussian components and try to
estimate, at least very crudely, the actual fraction of the
non-Gaussian component. The statistics for f,,, = 0.10 given
above leads to an estimate of (5-2)/35 = 10%, based on the
number data outside the 2¢ square. This is essentially the
minimal estimate because of strict conditions used to select
the f;,, value. If I decrease f;,, down to 0.06 Hz, I obtain a
quite different version of a PF-6K scatter-plot for stationa-
rized signal (Figure 4, bottom). Here, 10 points are outside
the 20 square, and this may indicate the non-Gaussian (he-
avy-tailed) contribution of 25-30%. Although subjectively I
consider this version as more realistic, I do not have at hand
an adequate technique to select optimal f;,, value and can
treat this estimate only as tentative. In the following, I will
consider the fraction value of 10-25% as a preliminary or-
der-of-magnitude estimate.

I can now sum up the above observations as follows:

1. More than 40 % of original accelerograms clearly devi-
ate from the model of the stationary Gaussian process.

2. Among them, a significant part deviate from the model
of the locally/intrinsically Gaussian process with time-vary-
ing variance ("quasi-stationary Gaussian process") as well.

3. If the data set is considered as a mix of records with
different distribution functions, then about 50-60% are near
to stationary Gaussian, and among the other 40-50%, some
are near to quasi-stationary Gaussian, and the rest are he-
avy-tailed non-Gaussian.
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4. The fraction of heavy-tailed records can be tentatively
estimated as 10-25%.

Note, however, that the three-type grouping given above
is somewhat arbitrary; another approach to interpretation of
the same data can be imagined, when all the three data types
are generated by a certain more general statistical model.

Discussion

The revealed deviations from the stationary Gaussian case
can be compared with the results of Hanks and McGuire
[1981], who give abundant data on accelerogram PF. In
their Figure 6b, the data on the 1971 San Fernando earth-
quake are given. If one uses (6) to determine the expected
data scatter and compares it with the plotted data, one can
find that more than 20% of data points on this plot are
above the upper 2¢ boundary. Furthermore, the eight near-
est points, that correspond to the hypocentral distances
below 28 km, give the average PF of about 4.7, (against
theoretical 3.440.3), suggesting a rather clear deviation
from the stationary Gaussian case. This observation is sup-
ported by the data on other California earthquakes given by
Hanks and McGuire [1981] Figure 6c, where again about
20% of the data are above the expected upper 2¢ level.
Therefore, the conclusions of Hanks and McGuire [1981]
regarding the applicability of the Gaussian model cannot be
considered as universal: the data presented here as well as
their own indicate that, roughly, 20-40% of strong-motion
accelerograms at distances below 100-120 km can be expect-
ed to clearly deviate from the stationary Gaussian model. In
numerical terms, however, the deviation is not dramatic,
empirical peak factor being, on the average, about 25%
above the one expected in the Gaussian case. Of 35 cases
studied here, deviations above +50% are found in seven.

All this means that in calculations for the stochastic
strong motion prediction, the use of peak factor estimates
based on the stationary Gaussian model may underestimate
peak acceleration value, by something like 25% on the aver-
age. Much larger underestimation can be expected if this
model is used to estimate a rare event, such as peak acceler-
ation with the repeat time of, say, 1000 years. Note, howev-
er, that the possible effect of such a bias on response spec-
trum or on nonlinear response of a building or a soft ground
layer may be somewhat smaller than that on peak accelera-
tion.

An important feature of the obtained results is that "Gaus-
sian" and non-Gaussian records can be produced by the
same source. It seems unlikely that the statistical properties
of radiation depend on the propagation direction or instru-
ment orientation. The more probable explanation of the lack
of a systematic picture is related to the properties of propa-
gation path. At the hypocentral distances 30-100 km, small
earthquake records often do not show short body wave
pulses whose duration can be related to the source process.
Instead, they often have long S group whose probable origin
is related to the (forward) scattering and/or multipathing
and/or site resonance. The record of a local earthquake can
be considered as an empirical medium response. Now as-
sume that a high-frequency source generates a heavy-tailed
random source function. Convolution of such a function
with such a medium response will tend to suppress isolated
strong spikes and may well result in "normalization," that
is, in transformation of the signal distribution function in
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such a manner that it approaches the Gaussian one. This
point of view is supported by decrease of “PF anomaly”
with distance for the San Fernando earthquake data of
Hanks and McGuire [1981] as well as by quite similar
decrease (evident but not studied in any detail here) in Mex-
ican data viewed in wider distance range as compared to the
one studied here, for example, 0-300 km. The explanation
can be formulated in another way: to form a non-Gaussian
record, some of the rays connecting bright spots of a source
with the station must be "weak-scattering”; if they are all
"strong-scattering,"” a Gaussian record arises. With increas-
ing overall distance, the probability of a "weak-scattering
ray" decreases, resulting in the observed distance depen-
dence of PF. The stochastic character of this picture ex-
plains why one can find high 6PF values even at relatively
large distances despite the overall trend.

In parallel with K = dPF*/dInN, it was interesting to
determine values of ! = dInPF/dInN. As was shown by
Gusev [1989], a gives the estimate of the exponent of the
power law distribution for amplitudes of pulses which are
supposedly generated by small asperity subsources and add
together to form an accelerogram. For original (not sta-
tionarized) records, o' = 0.21+0.05. This value charac-
terizes a typical record at 30-100-km distance. It will proba-
bly decrease nearer to the source, so that the corresponding
« value of 5 can be considered as an upper bound.

Conclusion

A simple statistical technique was designed and applied to
the maximum segment of near-source accelerograms of
large-magnitude Mexican earthquakes. For 40-50 % of them,
the null hypothesis of the stationary Gaussian process is
rejected based on statistics of extrema. Another record mod-
el, of the quasi-stationary Gaussian process, agrees with a
larger part of the data (roughly 75-90%) yet cannot explain
the whole data set: for 10-25% of it, a heavy-tailed non-
Gaussian distribution model is preferable. Thus each of the
mentioned models reflects properties of some fraction of
data. From the engineering point of view, the deviations of
the observed peak factor values from ones expected in a
stationary Gaussian case are moderate to large (25% on the
average and above 50% in 7 of 35 cases). The non-Gaussian
behavior of accelerogram amplitudes suggests the analogous
properties of source radiation, generally supporting Gusev’s
[1989] concept of heavy-tailed distribution for radiated ac-
celeration peaks.

Appendix: Derivation of Key Formulas for the
Narrowband Case

The derivation of the cited equations (3)-(7) is lengthy
and cannot be repeated here even briefly, but for the nar-
rowband case, the derivation is much shorter and can be
reproduced here. Let x(#) be a realization of a narrowband
Gaussian process, then its Hilbert transform y(t) = Hlx ()]
is uncorrelated with it and is also Gaussian with the same
variance parameter. Analytical signal a(t) = x()+iy(t) =

GUSEV: NON-GAUSSIAN PEAKS OF MEXICAN ACCELEROGRAMS

A(t)exp(ig(t)) contains nonnegative instant amplitude A()
and phase ¢ (), mutually independent. For the narrowband
case, extrema of x(¢) are near to moments ¢ () = kw, k =...
-2,-1,0, 1,2, .... Then, the distribution of extrema coin-
cides with that of A(#) and the distribution of squared ex-
trema - with that of A2(t) = x2(t)+y2(t). (Because of lacking
correlation between A(t) and ¢ (z), extrema can be treated as
if they occur at random time moments.) Now the sum of
two squared normal variates of identical variance 02 = x2_
i x2, or exponentially distributed with the parameter 202,
so that z = x? .,/20% follows the standard exponential
cumulative distribution P(z) = 1-exp(z) (and z'* has the
Rayleigh distribution). To derive PF distribution, assume N
independent identically distributed exponential variates z,
2y, wevs Lo --+» Zy- The distribution function of the maximum
2y among z; iS Pyzy) = Py = (L-exp(-z))V. At
large z,,, let exp(zy) = /g, then Py(zy) = [(1-1/g)71V4
~ exp(-N exp(-zp,)). Now note that PF? = 2z, and obtain
an analog of (4). To obtain the analog of (5) for median, set
PM(ZM,50%) = 0.50 alld ﬁnd ZM,SO% = lnN-lnln2 or
(PF?)syq = 2InN-2Inin2.
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