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INTRODUCTION

SUMMARY

Envelopes of scalar waves are simulated at various distances from an instant point
source embedded in a random uniformly scattering medium by means of direct Monte-
Carlo modelling of wave-energy transport. Three types of scattering radiation pattern
(‘indicatrix’) are studied, for media specified by (1) a Gaussian autocorrelation function
of inhomogeneities, (2) a power-law (‘fractal’, k~*) inhomogeneity spectrum and (3) the
mix of case (1) and the isotropic indicatrix (very small + large inhomogeneities). We
look for a model that can qualitatively reproduce the two most characteristic features
of real S-wave envelopes of near earthquakes, namely (1) the broadening of the ‘direct’
wave group with distance and (2) the monotonously decaying shape of the coda
envelope that does not deviate strongly from that expected in the isotropic scattering
case. Both properties are observed for any band over a wide frequency range (1-40 Hz).
The well-studied isotropic scattering model realistically predicts the appearance of
codas but fails to predict pulse broadening. The model of large-scale inhomogeneity
realistically predicts the mode of pulse broadening but fails to predict codas. We have
found that, for a particular frequency band, within each class of inhomogeneity studied,
both requirements can be qualitatively satisfied by a certain choice of parameters. In
the Gaussian-ACF case, however, this match can be obtained only for a narrow
frequency range. In contrast, the fractal case (with a value of exponent « of about
3.5-4) reproduces qualitatively the observed wide-band behaviour, and we consider it
a reasonable representation of the gross properties of the earth medium.
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or directivity function (‘indicatrix’) is isotropic (spherically
symmetrical), and in many cases it was shown that real data

Following the work of Aki (1969) and Aki & Chouet (1975),
the idea of considering the coda of a local earthquake as the
product of scattering of the initial short body-wave pulse in
a random medium has become widely accepted. It is less
common, however, to consider the entire record of a near
earthquake, including both the ‘direct’ wave group and the
coda, in such a manner. Some steps in this direction were
taken by Sato (1977, 1984, 1989), Gusev & Abubakirov (1987)
and Zeng, Su & Aki (1991). Although these papers dealt with
both ‘direct” waves and coda, they did not provide an efficient
method of interpretation of the entire record in terms of the
parameters of the scattering medium. Better methods, based
on the integration of a squared record over time, were first
proposed by Wu (1985) and Hoshiba (1993). It was assumed
in most of the cited studies that the scattering radiation pattern

can be fitted rather well by theoretical trends based on such an
isotropic scattering model. Physically, the isotropic scattering
model is associated with an inhomogeneity size much less than
that of the wavelength.

Another approach, based on the observation of the broaden-
ing of a ‘direct’ wave power pulse, i.e. a non-coherent S-wave
group, with distance and assuming forward scattering (that is,
a forward-enhanced scattering indicatrix), was used by Gusev
& Lemzikov (1983, 1985), in which a quadratic trend of the
pulse width versus the distance was proposed, and the first
estimates of the mean free path were carried out. Further
improvements were made by Abubakirov & Gusev (1990) who
used two techniques, both based on the energy transport
approach: an analytical (multiple low-angle scattering) tech-
nique and a numerical (Monte-Carlo) technique. A detailed
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study of pulse broadening was carried out by Sato (1989) and
Scherbaum & Sato (1991) based on the parabolic approxi-
mation (PA) for a plane wave, assuming that the inhomogeneity
size is much larger than that of the wavelength. Both studies
compared their respective theories with real data. Theoretical
trends matched the observed ones reasonably well. Finally,
Gusev & Abubakirov (1987) and Hoshiba (1995) tried to use
non-isotropic, multiple, forward-scattering models to fit the
parameters of observed envelopes—an approach that can
combine the positive aspects of both presented approaches.

To do this effectively, one must resolve a puzzling contra-
diction that reveals itself when one notices that the theories
that have been successfully applied to real data assume two
radically different model indicatrices: (1) isotropic, in order to
predict the coda decay shape, and (2) non-isotropic, strongly
forward-enhanced, in order to describe pulse broadening. It
was shown by Gusev & Abubakirov (1987) that at distances
that are small compared to the mean free path even a moder-
ately narrow (20°) indicatrix leads to an unrealistically fast
decay of the coda envelope just after the direct wave group. A
qualitatively similar fast decay is predicted by the PA theory.
The question arises whether it is possible to find indicatrix
functions that can simultaneously produce both realistic coda
shapes and realistic pulse broadening. In the following we try
to answer this question. As candidate models, we will study a
model with a single well-defined characteristic size, specifically
a model with a Gaussian autocorrelation function of inhomo-
geneities, and a multiple-scale model, with a power-law
inhomogeneity spectrum, which describes fractal inhomo-
geneity, proposed explicitly for the lithosphere by Wu &
Aki (1985b).

To obtain theoretical envelopes of scattered waves we
use the numerical Monte-Carlo approach. Our earlier tech-
nique (Gusev & Abubakirov 1987) will be applied with some
important modifications.

GENERAL THEORETICAL BACKGROUND

In this section we will briefly present some known results that
form the basis of our technique. Refer to Ishimaru (1978),
Rytov et al. (1978) for general and Wu (1985), Sato (1995) for
seismologically oriented presentations of the underlying theory.
Let us specify the random/incoherent scalar wavefield by its
(radiation) intensity, I,(r, n), defined by the relation

dly=I(r,n) dQ,, (1)

where dI is the radiation energy flux into a solid angle dQ,
with its vertex at a location r and its direction along a unit
vector n. The difference in intensity values at two adjacent
points on the same ray n separated by the distance dl can be
represented as a sum of two terms representing loss and gain:

I(r+ndln)—I(r,n)=—dl, +dl,. (2)

Loss can be represented as a sum of the scattering loss and
the intrinsic (absorption) loss:

dly = I,(r, n)a,dl + I,(r, n) dl, (3)

where o, and o; are the scattering and absorption coefficients
[I, = 1/a, is referred to as the (non-isotropic) mean free path
(MFP)]. Gain is produced by scattering from all other propa-

gation directions into n:

dl, = J I(r,m) f(n, m) dQ,, dl, (4)

where f(m, n) is the differential scattering coefficient, or the
differential cross-section of unit volume of the medium, describing
wave intensity transfer from a direction m into a direction n.
(4) can be thought of as a definition for f(m, n). From (2), for
the derivative along n we now obtain

dl(r, n)

i =L n}+f Lm)f(m, ). (5)
an

This is the basic equation of the radiative transfer theory, valid
when the mean/coherent field is zero, that is, far from the
sources of waves. To account also for the mean field, one more
equation of a similar structure must be added to form a system

dI(r, n)
S = et w)l ()
+ J‘ [Ig(l", l'l'l) + ‘fﬂ(r’ m)]f(‘“» n) ds}ms (6)
dly(r,
FD o+ syt m),

where I4(r, n) is the radiation intensity of the mean field. The
loss term is present for the mean/coherent field but the gain
term is not, because coherency cannot be restored and a
random field cannot produce a coherent one (ie. one with a
non-zero mean). Adding both equations, the equation for the
total intensity, I = I, + I,, which is similar to (5), is obtained:

% = — (o + o) I(x, n)+j I(r, m)f(m, n) dQ,,. (7N
dn

This is the basic equation for our modelling. As one would
expect, o, is related to f(m, n):

05.=_[ f(m.n)dﬂ...(=f f(m,nldﬂn), (8)

i.e. the entire scattering loss for a direction n is the sum of the
losses into each of the other directions. Dividing f(m, n) by
o,, a normalized scattering radiation pattern, or ‘indicatrix’
function [following the usage of optics, see e.g. Rytov et al.
(1978)], is obtained:

¢o(m, n) = f(m, n)/a,, J‘ $o(m, n) dQ, =1. (%)

Radiative transfer theory was initially developed on a
phenomenological basis. Later, it was related to wave-
propagation theory. The radiative transfer equation can be
derived from the Bethe-Salpeter equation for a two-point
coherence function of a multiple-scattered random wavefield
with some fairly unrestrictive additional conditions (Rytov
et al. 1978). One is that the wavelength must be small compared
to the non-isotropic mean free path 1/x,, which is merely the
assumption of weak scattering. Another is that

(kay*e? <1, (10)

where k is the wavenumber, a is the correlation radius of the
inhomogeneity field, and o7 is the mean square fractional
velocity fluctuation, usually much below unity. The case of



very large ka is not covered by this condition, but it can still
be treated on the basis of the radiation transfer equation if
the parabolic equation approximation is applicable. Therefore,
the domain of formal correspondence between the full-wave
approach and the radiative-transfer approach is rather wide.
(This does not mean that the radiative-transfer approach will
necessarily produce errors outside this domain: in many cases
the field of applicability of an approximate method in the
wave-scattering theory is much wider than could be expected
on the basis of a formal analysis.)

The relationship of the differential-scattering coefficient
f(m,n) with the properties of the medium is as follows
(Ishimaru 1978). For a random weakly scattering acoustic
medium, f(m, n) can be expressed through the autocorrelation
function (ACF) of the inhomogeneity field. Let this field be
specified by the fractional velocity fluctuation &(r). Its ACF is
then defined as

Cols) = Celre(r +5) (11)
(here Cy(s) is assumed to be the same for any r, ie. the
inhomogeneity field is assumed to be statistically uniform).
The Fourier transform of C,(s) gives the power spectral density
of inhomogeneity,

Colk) = [Co(s) exp(—iks) d’s. (12)
For the isotropic inhomogeneity fields considered below,
Cols) = C(s) and Cy(k)= C(k). Then, f(m, n) is determined by

f(m, n) = 2nk*Co[k(m — n)] = 2nk* C[ 2k sin(6/2)], (13)

where 6 = cos™'(mn) is the scattering (deflection) angle. Note
that this is true for weak scattering only, ie. in the Born
approximation.

PRINCIPLES OF THE NUMERICAL
MODELLING: THE CHOICE OF SCALING

In the following we apply the Monte-Carlo technique to study
the wave energy propagation through a random medium. This
approach is a standard one for solution of the radiation
transfer equation in atmospheric optics or of its analogue in
neutron transport theory. Although practically all problems
considered in these fields are stationary, the direct Monte-
Carlo approach, when particles or ray propagation trajectories
are traced in model time, needs no significant modification to
deal with non-stationary problems. Note that (6) does not
contain a time variable. A general formulation of the non-
stationary radiation transfer problem was recently proposed
by Sato (1995).

Let us consider the relation between radiation transfer
equation (6) and the Monte-Carlo modelling procedure.
Rewrite (6) explicitly expressing scattering loss into each
direction:

ﬂg:,l) = —I(r,n) J f(n,m)dQ,, — o I(r,n)
dm

- J I(r, m)f(m, n) dQ,, . (14)
4

We will model the I(r, n) function by particle density N(r, n).

Particles are thought to be propagating along their trajectories/

rays with a constant velocity ¢. For a finite small spatial

increment Al, with some manipulation one obtains

AN(rn)
——hN(r, o —a Al J;“ do(n, m) dQ,, — oy Al
o, Al
+ N J;‘ Po(m, n)N(r, m) dQ2,, . (15)

The left side of this relation is the fractional change of the
number of particles moving in the n direction on a path
element Al It consists of three terms, representing a fraction
that leaves direction n, a fraction that dies off, and a term
representing gain produced by scattering from each of the
other directions into n. When a modelled particle propagates
over Al, only the first two terms need to be modelled; the third
will be modelled automatically when propagation along other
directions are modelled in their (random) turn. Thus, a particle
propagating over an elementary path Al is either scattered
with the probability «,Al, or disappears with the probability
o;Al, (or continues its motion along n, with the probability
[1 — (e, + o5)AIT). If it is scattered, it ‘chooses’ a new direction
with the probability Pr(m) = ¢,(n, m). Note that ¢,(n, m) was
accordingly normalized in advance.

In this paper we study the simple case of an instant point-
radiation source with an isotropic radiation pattern; intrinsic
loss will not be accounted for (¢ = 0). The source is located at
r =0 and produces a pulse at t = 0. Integrating source radiation
intensity Io(r,n)= Ngy(r,n) = N(r,n) over a small sphere of
radius R, centred on the source, one obtains the source energy

M =4nR*N,(0, n). (16)

If M =1, the resulting radiation field N(r, n) is essentially the
Green’s function of the radiation transfer problem. We will use
the condition M =1 throughout this paper. Although the
temporal evolution of N(r, n) has not been expressed explicitly
yet, it is generally time-dependent. With the Monte-Carlo
technique, the temporal evolution is modelled automatically
due to the emission of particles at a specified moment and
their propagation with a definite velocity. We do not accumulate
the directional information during modelling, so only the
(omnidirectional) energy density,
N(r,n, t) dQ,,

e(r, t)=(1a’M}J. (17)

an
will be discussed further.

An important property of the scattering radiation field is its
asymptotic behaviour at large . Following Ishimaru (1978)
we shall assume that at large f, e(r,t) obeys the diffusion
equation (Wesley 1965; Aki & Chouet 1975), with the diffusion
coefficient D =1[,/3, where I, is the effective mean free path.
Thus one cannot distinguish between various indicatrix func-
tions if e(r, t), or even N(r, n, t), is known for large ¢ only. The
relationship between [, and I, = 1/u, is given by

I=1,(1—<¢cos 871, {cos B)=J cos Odg(n, m) dQ,,

(18)

(Ishimaru 1978). Therefore, if ¢o(m, n) =const = 1/4xn, [, =1,.
This isotropic scattering case has been much studied (see e.g.
Zeng et al. 1991 and references therein); it can be considered
as a natural reference for more complicated cases. If we
associate earthquake coda with the described asymptotic case,
then MFP values determined based on the coda level will
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represent [, and do not provide any direct information about
l,. We will show below that I, is the characteristic distance
determining, in addition to coda level, scattering effects such
as pulse broadening.

To simplify the theoretical analysis, we performed our
modelling in dimensionless variables. To do this, we set I, and
¢ to unity. To relate the results with the real data, one should
normalize real distance and real time by the values of effective
MFP [ and ‘effective mean free time’ t, = I,/c. We denote the
normalized coordinate vector, hypocentral distance and time
as p, p and t respectively. Note that with ¢ = 1, wave-energy
density is equal to wave-energy flux. Hence, we can treat the
square root of particle density as the wave amplitude, and it
is this quantity that will be presented in the figures that follow.
In p—t coordinates, large-t asymptotics of all envelope func-
tions (late codas) must (and will) coincide, enabling their easy
comparison at earlier times (and, incidentally, a check of the
Monte-Carlo numerical scheme).

THE MODELLING PROCEDURE

The Monte-Carlo modelling scheme of Gusev & Abubakirov
(1987) was employed with some important improvements. As
only the spherically symmetrical case is treated, we determine
the function

i(p, ) =e(p, D ipi=p (19)

directly. Recall that this is the volume particle density
normalized to one radiated particle (M = 1). To estimate i(p, 7)
at each particular 7, we count particles in each bin of the size
Ap around p and then divide the result by the bin volume and
by the total particle number. Each modelled particle is emitted
from the point source at p=0, =0 in a spherically sym-
metrical manner (this is in fact excessive: any radiation pattern
would do). Then, its 3-D trajectory is ‘monitored’” during all
the specified modelling time. A trajectory consists of discrete
unit substeps of fixed length L<«[,. The number of substeps
constituting any particular linear segment of a trajectory (i.e.
‘free path’) is drawn out of the geometric distribution, chosen
so that the average free path is equal to I,. This technique is
a discrete analogue of the standard exponential distribution of
the free path, with the probability density p(x) = exp(—x/I,)1,.
For each scattering event, we must determine two angles that
define the direction of the next free path relative to the current
one. One of them is the scattering angle 6, and it is modelled
by drawing a random number according to the particular
indicatrix. We also need a second angle (‘longitude’, if 0 is
thought of as polar distance on a unit sphere). As we are
working here with axisymmetrical indicatrices, this angle is
modelled as a uniform random over (0, 2x). Each trajectory
is completely independent of any other. Particle position is
recorded with a constant pre-determined time step, which is
equal to or is a natural multiple of L, thus avoiding the
accumulation of a rounding error. The number of traced
particles varied typically between 20000 and 100 000. The
number of distance bins was 50, and the number of time steps,
200-1000. Thus, the typical temporal resolution of model
envelopes was about 1 per cent of the traveltime. Wide ranges
of time/distance were covered by a series of simulations, each
with a different bin size and time step.

Two particular classes of indicatrix functions can be chosen
for modelling: ‘Gaussian ACF” and ‘fractal’. Both describe the
scalar wave scattering in a medium with an isotropic random

inhomogeneity field of a particular kind. For versatility,
any indicatrix can, in addition, be mixed with an isotropic
(constant over a unit sphere) indicatrix in any proportion. In
the Gaussian-ACF case, the autocorrelation function (ACF)
and power spectrum of inhomogeneity are

C(r) = a2 exp(—r?/a®), C(k) = *2a® o2 exp(—(ka)*/4),

(20)
where o2 =C(0)=<e(r)e(r)), and a (‘correlation radius’)
specifies the characteristic scale of inhomogeneity. This gives
the indicatrix function [which we redefine here as a function
of the angle 0 so that ¢(f)= ¢(arccos(mn))= ¢o(m, n)] and
{cos 0 as

exp((cos 0 —1)/5?)
2re?(1 —exp(—2/a%))’

_ L+exp(=2/o?)
(cos6>=1 —exp(—2/c%) ’

(21)

where ¢ =2'2/ka. Note that at large ka, the usual case, the
indicatrix becomes a narrow axisymmetrical lobe around the
initial direction. As this takes place, ¢o(m,n) approaches
the 2-D Gaussian probability density over Q. We introduce a
locally orthogonal coordinate system on the unit sphere, with
its origin corresponding to the initial direction m, and two
angular coordinates §, and &,. For small 6 the indicatrix
function ¢(f) converges to the Rayleigh distribution density
over 0, which corresponds to a 2-D Gaussian bell over 6, and
0, with a standard deviation ¢ over each of these coordinates.
Hereafter we will therefore treat ¢ as an angular quantity. The
case when the indicatrix function as such makes a 2-D Gaussian
bell over two angular coordinates has been studied previously
(Gusev & Abubakirov 1987; Abubakirov & Gusev 1990). It
should not be confused with the ‘Gaussian-ACF’ case. These
two cases are, however, practically identical if & < 20°.

The ‘fractal’ case, i.e. scattering by a random inhomogeneity
field with a power-low spectrum, was modelled essentially in
the same manner. A simple power law, however, produces an
indicatrix that is, in general, non-integrable at small . To
overcome this problem, we assume a low-wavelength cutoff
(‘fractal limit") of the fluctuation spectrum at k =k, The
corresponding indicatrix is

C(k]oc{l’ qu", 0 K{(Sin'gm“?)_“, 0<0<b,
(ko)™ k>ko (sin 6/2),

#(0)=

Op<l<m
(22)

Note that the case « =0 corresponds to isotropic scattering,
=13 is the self-similar fractal case, and the case « =4 is near
to that of the exponential autocorrelation function with a
correlation radius a ~ 1/k6,.

To realize probability distributions representing indicatrices
(21) and (22), corresponding random-number generators were
designed. They use o or (6, #) as the parameters. To relate I,
to I, =1, the values of {cos () were calculated by analytical
integration for the Gaussian-ACF case and by numerical
integration for other cases. Also, each modelling run gives, as
a by-product, a Monte-Carlo integration estimate of {cos 8
providing an inner check of the procedure.

To illustrate the modelling procedure and at the same time
to obtain some insight into the studied phenomena, we created
some illustrations, which, for the sake of graphical clarity, were
calculated for the 2-D medium and for the needle-like source-
radiation pattern. Fig. 1 shows the appearance of trajectories
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Figure 1. 10 random 2-D trajectories traced up to dimensionless time ==0.5 (upper row) and 5.0 (lower row), simulated with two model
indicatrices: isotropic (left column) and Gaussian ACF with ¢ = 10° (right column). X and Y are the components of the dimensionless 2-D position
vector . The black dot at (0.5, 0.0) on the top left graph denotes six unscattered particles.

for the cases of isotropic and strongly non-isotropic indicatrices.
At ©=0.5, about half of the isotropically scattered particles
propagate ‘coherently’, producing the delta-like peak; the rest
are moving along angular paths. As [./I, = 33, no ‘coherent’
non-isotropically scattered particles are left at T=0.5: all are
moving along visually smooth trajectories. One can see from
this figure that energy loss by scattering by large angles from
the initial ray is indeed described by [, and not by [,,. At large
7(=5.0), for both indicatrices one observes the feature of the
diffusion regime: the coherent component is absent even in the
isotropic case, the initial direction of propagation is completely
forgotten, and the average distance from the origin is of the
order of 1% & 2.3, as it should be for diffusion.

Fig. 2 shows only the final particle positions for 500 particles
at t=0.7. In addition to the delta-like direct pulse noted
above, which is present in the isotropic case and absent in the
non-isotropic one, we see here two more subtle differences
between these cases. First, in the non-isotropic case the particles
mostly fill a finite layer adjacent to the (circular) wavefront, so
that the energy arrival broadens, and one can expect a finite
duration of the ‘direct’ wave pulse, instead of the delta-like
pulse in the isotropic case. Second, the neighbourhood of the
source is practically free of illumination in the non-isotropic

case, whereas in the isotropic case the particles fill the interior
of the wavefront more or less homogeneously. This means that
for ¢=10° only a very weak coda is expected immediately
after the direct-wave arrival at a receiver located near enough
to the source. The cause of this is that particles/rays are not
permitted to turn by large angles, and to make a full turn they
must propagate as far/long as =1

To demonstrate these properties graphically, we calculated
the e(p, 7) function for three indicatrices: isotropic, and two
Gaussian-ACF ones, with ¢ = 35° and 10° (Fig. 3). As already
noted, we consider it appropriate to express all our results in
terms of amplitude, not power; thus instead of e(p, ), we plot,
here and below, the ‘amplitude’ function, defined merely as
[e(p, ©)]"2, and denote it as A on the plot. In the case 6 = 10°,
one can see the deep minimum of amplitude, which, at small
distances (p <0.4), begins just after the direct arrival and
extends up to 7~ 0.5. The shape of the ‘direct pulse’ is, however,
quite realistic, with the duration quickly increasing with dis-
tance. In the isotropic scattering case, the coda decay is
(realistically) monotonous, even at small p, but the direct wave
is always delta-like. The case of ¢ = 35° presents some more or
less acceptable compromise between these cases. In the following
we will discuss this situation in detail for the 3-D case.
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Figure 2. Positions of 500 model particles at =0.7 for two model
indicatrices (see Fig. 1). The black dot denotes about 250 unscattered
particles.

RESULTS OF THE MODELLING

Gaussian-ACF indicatrix

We start with the Gaussian-ACF case as the simplest one. In
Fig. 4 one can see the evolution of the scattered amplitude
envelope with distance for ¢ = 6°, 20°, 40° and 60° (ka=13.4,
4.05, 2.03 and 1.35). The isotropic case (¢ = o, ka =0) is also
shown. Each plot was obtained in a series of three simulations,
with t-step values of 0.0001, 0.04 and 0.2. For reference, the
asymptotic (p =0, coda) isotropic envelope shape (Eq. 45 of
Abubakirov & Gusev 1990) is drawn on all plots. Because of
the very large dynamic range, the lower parts of some modelled
curves are noisy and are not drawn. To relate these and the
following plots to reality, one can crudely let [ = 50-100 km,
so that p = 1 can be read as r = 70 km. For the most interesting
range, p =0.1-2, more detailed results are given in the lower

2

sigma=10° %

Figure 3. The envelopes e(p, ) for 2-D scattering with three different
indicatrices, simulated with 10° particles. Left axis is p, right axis is .
Space-time evolution is presented: at any fixed p, a record envelope
can be seen, and at any fixed t, a snapshot of spatial energy distribution
can be seen. The ‘pool’ at the right plot at t=0.1-1.07 and p=0-0.1
is in fact deeper, but unmeasurable with the actual accuracy; thus an
arbitrary ‘waterlevel’ is introduced. Simulation noise is visible as
ripples at small p and small amplitudes.

right box of Fig. 4 for ¢ = 6°. One can see that the asymptotic
coda curve still exists, even in this not very realistic case, but
its shape radically differs from any observed one. For & = 20°,
the deviation from the isotropic case is smaller, but still more
than one order of magnitude, whereas at ¢ = 60° an unrealistic
d-like pulse is seen, like in the isotropic case. Therefore, only
the indicatrices with & =30-40° can produce more or less
realistic envelopes, confirming the earlier conclusions of Gusev
& Abubakirov (1987) based on the very limited simulation
experience.

In Fig. 5, drawn on a natural scale, several ‘direct-wave’
pulses are shown, for small and medium p. For o =3° the
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Figure 4. The families of scattered envelopes in the 3-D Gaussian-ACF case, for various values of the indicatrix width parameter o (first four
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Figure 5. The near-onset part of 3-D Gaussian-ACF envelopes on
the natural scale for two values of distance for various ¢ values, and
for the isotropic case for two values of distance. t steps are 0.0001 (left
plot) and 0.0025 (right plot). The inequality of visible envelope areas
would disappear if we plotted power instead of amplitude.

‘direct-wave’ pulse with a lagged maximum can already be
seen at p=0.055, but is not yet formed for ¢ =20° at this
distance: a sawtooth pulse with an abrupt leading edge,
combined with the genuine d-like direct-wave pulse, is seen.
At p= 1.1, pulse shapes are almost similar for both of these ¢
values. The change from the abrupt to the smooth leading
edge takes place at p ~0.05 for ¢ =6° at px0.1 for ¢ =107,
at p~0.25 for ¢ =20" and at p =2 for ¢ =40°. An important
qualitative result is that after this change, the pulse shape at
any given ¢ converges to a certain asymptotic shape that is
independent of ¢. This observation is evidently related to the

concept of ‘saturated fluctuations’ (see Sato 1989): after some
evolution, the pulse shape expected from parabolic approxi-
mation must stabilize at some distance and at greater distances
follow a definite asymptotic shape function (i.e. the pulse shape
becomes identical after the corresponding time axis expansion/
compression). This also could be expected from the numerical
(Monte-Carlo) and analytical analyses of Williamson (1972).
It is shown there that the formation of a standard asymptotic
pulse shape is related simply to the multiplicity of scattering:
when the number of scattering events becomes large, an
asymptotic shape arises. Its analytic expression is cited later.

One can see in Fig. 5 that, for a given distance, the asymptotic
pulses coincide for various . (This coincidence is specific for
our scaling, i.e. for the particular choice of dimensionless
variables T and p.) This fact suggests that the characteristic
pulse duration depends only on the scaled distance and does
not depend on o, provided that it is small enough. This is just
what could be expected based on the results of Williamson
(1972, 1975) as well as on the simple theory of multiple low-
angle scattering presented in Abubakirov & Gusev (1990). It
is this property that gives one the possibility of estimating I,
from the duration versus distance data.

‘Fractal’ indicatrix

As an alternative to the Gaussian-ACF case with a single
characteristic size of inhomogeneity, we also studied multiscale
cases, starting with the fractal one. Fig. 6 shows our results for
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Figure 6. The near-onset (left) and the general (centre) pattern of envelopes in the *fractal’ case, for various values of the exponent « of spectral
decay, with the value of the cut-off angle 6, = 6°. On the right, the independence of the envelope shape from the 0, value is illustrated: the difference
between the simulated curves for 6, = 3° (solid line) and ), = 10° (dotted line) is below numerical noise. The asymptotic coda shape for the isotropic
case is shown by dashes. t step/bin size: left plot: 0.0001, middle plot: 0.0001 up to = 0.5 and 0.04 later; right plot: 0.04,

p=0.25, 0,=6° and « values from 0 to 5. Both the general
shape and the ‘direct’ pulse are separately presented. The
envelope shapes do not perceptibly depend on the 6, parameter
until it is small enough; only the value of « matters (therefore
this is indeed the fractal case). This is illustrated by the right
box of Fig. 6 where we compare envelopes, simulated for « =3
and p=0.1 and 0.5, for two different values of 6,: 3° and 10°.
The modelled envelopes for these cases are seen to coincide
within the modelling error. This is a clear illustration of the
negligible effects of large-size inhomogeneity on real envelopes.
Notice that at « <4, the deviation of the coda level from that
of the isotropic case does not exceed half an order of magnitude.
At o = 5, however, this deviation becomes much larger.

Mixed Gaussian-ACF and isotropic indicatrix

This case combines very short-wavelength and long-wavelength
inhomogeneity without any intermediate-wavelength inhomo-
geneity (compare Wu & Aki 1985a). It is interesting, at least
as a certain limiting case; also, despite its intuitively not very
realistic character, it provides the best qualitative fit to real
data (more on this below). Fig. 7 shows the general shape of
envelopes for p=0.30 and the zoomed near-onset part for
p = 0.245. We show the results for the Gaussian-ACF indicatrix
(6 =6°), with the variable admix of the isotropic indicatrix
(i.e. the actual indicatrix function is the weighted average of
the two, and the relative weight of the latter is the ‘per cent’
parameter). Again, the general picture does not depend on the
choice of a particular ¢ value until ¢ is small enough. One can

100
40
20
10-

amplitude
h

0.04 4
0.02

0.24

n.oz T
0.25 0.5

T L T T L
0.26 _ 0.38 1.25 25 5.0
T T

Figure 7. The near-onset and the general pattern of envelopes in the
case of the mixed Gaussian-ACF (¢ = 6") and isotropic indicatrices,
for O per cent, 0.2 per cent, 0.6 per cent, 2 per cent and 100 per cent
contributions of the isotropic component 7 step: left plot: 0.0001; right
plot: 0.04.

see that by manipulating the relative weight of the isotropic
component one can produce a family of curves generally
reminiscent of those for the fractal case with various «, or for
the Gaussian-ACF case with various ¢. One important differ-
ence from the fractal case is that the onset of the pulse is not
abrupt throughout the whole range of parameters studied.

PEAK DELAY OF THE ‘DIRECT’ WAVE
PULSE

We also studied the delay of the peak of the ‘direct’ wave pulse
with respect to the onset time, i.e. the peak delay 7,,. The results
of our modelling are partly shown in Fig. 8. Four series of 1.,
values are given: the Gaussian-ACF case with ¢ =3° and 20°,
and the ‘fractal’ case with & =3 and 4 (at small 8, =6°). Plots
are not fully smooth due to the combined result of numerical
noise and the effects of finite bin size, but the general trends are
obvious. In the case of a narrow indicatrix (Gaussian ACF, ¢ =
3°) over the wide range of p =0.05 to 2, the modelled t,, value,
within our accuracy limits, coincides with the quadratic trend

T = 0.091p%, (23)

which is predicted (for p«1 only), based on the relevant
theory of Williamson (1972, 1975). This theory describes an
energy pulse propagating from a point source through a 3-D
scattering medium with Gaussian ACF at large ka (that is,
small o) (or, essentially, with any very narrow indicatrix), and
its asymptotic shape is given by
2 2,2
i(p, 7)) = 3 (— 1y exp(%), (24)
7 o= P

where 1, =7 — p. We determined the value of the coefficient in
(23) by setting the derivative of (24) to zero and solving the
resulting equation numerically. The value of 0.091 obtained
slightly improves our earlier Monte-Carlo result of 0.1
(Abubakirov & Gusev 1990). At p > 2-3, the modelled curve
departs upwards from this trend, and begins to approach the
predictions of the diffusion model (Aki & Chouet 1975), for
which it is easy to show that 7, =p*?2—p. The curve for
g =20" begins at p=0.55 because no lagged peak exists at
smaller p. Its trend at greater distances illustrates the conver-
gence of waveforms, mentioned above, to the asymptotic (small
o) shape represented here by the case ¢ = 3°.

In the ‘fractal’ case, the diffusion asymptote is the same, as
would be expected, but deviations from the quadratic trend
(7) are manifested much more clearly. A lagged peak appears
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Figure 8. ‘Direct-pulse’ broadening with distance, expressed as onset-
to-peak delay 7., versus p. Symbols denote the results of simulation:
two variants of the Gaussian-ACF case with ¢ =3° (dots) and 20°
(squares); and two variants of the ‘fractal’ case with a=3 (triangles)
and o =4 (crosses). Dashes show the relationship (23) derived from
the Williamson (1972) analytical pulse shape; it is extrapolated well
above the region p < 1 where this result must be valid. The formulas
of Williamson (1972) were derived for the case of a narrow indicatrix,
and should be compared to the Gaussian-ACF case, o = 3°. The dotted
line is the analytical result for the diffusion case and must be valid, at
p> 1, for any indicatrix. In both (asymptotic) cases, analytical results
match the results of simulation well.
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at p~0.6 at x=4 and only at p~09 at «=3. In this last
case, deviations from the Gaussian case persist up to p=3.
Numerically, the difference is as great as 3 times at p=1 for
o = 3. One observes that the dimensionless distance where the
lagged peak arises is closely related to the indicatrix type; the
value of t,,, at p = 1 is also informative. It is worth remembering
that for the isotropic case there is no peak delay at all: the
theoretical pulse onset is always abrupt and delta-like (see
Fig. 4); it is, however, hardly observable at p > 3-4.

Note that the deviations of 1, from those for the case of
Gaussian ACF with a narrow indicatrix are, in all cases
studied, of the same negative sign. This strongly suggests that
this case can play a specific role in providing the upper
boundary for 7, (and other pulse duration measures as well).

QUALITATIVE COMPARISON OF
MODELLED AND REAL ENVELOPES

We can now compare the properties of the modelled envelopes
with those of the observed ones. As we have already mentioned,

the two most obvious properties of the observed envelopes are
the monotonous ‘qualitatively isotropic’ coda shape and the
broadening of the ‘direct’ wave pulse with distance. As an
illustration, Fig. 9 is a reproduction of Fig. 7 from Rautian &
Khalturin (1978). One can see that there is a well-defined
asymptotic envelope shape, or coda, and that individual
envelopes approach this coda shape monotonously and, in
general, from above. This picture qualitatively corresponds to
the isotropic scattering case (Fig. 4) for p < 1. Such an analogy
was seemingly the main reason why the single isotropic scattering
model was so widely applied to data interpretation. We
emphasize that this behaviour is very typical, and can be
observed simultaneously for several bands over a very wide
frequency range. As we consider only body waves here, we can
speak with confidznce about the 1 to 40 Hz range, which covers
more than 1.5 decades. To illustrate the pulse broadening we
reproduce in Fig. 10 Fig. 4 from Sato (1989). Here one can see
the pulse broadening with distance simultaneously in five
adjacent frequency bands covering the same frequency range.

One more observational constraint is the frequency depen-
dence of the ‘observed’ mean free path, which we denote I The
observed [ versus f trends range from = f ' (Rautian et al.
1981) through a f ~ 2% (Wu & Aki 1985b; Gusev & Lemzikov
1983, 1985) to =~ f"? (Hoshiba 1993; Mayeda et al. 1992).
Generally speaking, the most intensive scattering takes place
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Figure 9. Observed envelopes for five frequency bands (symbols) and
asymptotic coda shapes approximated by a sequence of dashed curves.
The observed envelopes are scaled arbitrarily for the sake of
presentation. Only the lower three plots can be thought to result from
body-wave (3-D) scattering. Station Garm, Tajikistan. Reproduced
from Rautian & Khalturin (1978) with permission of the Seismological
Society of America.
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Figure 10. Onset-to-peak tp (circles) and onset-to-the-later-half-peak
tq (dots) delay times versus hypocentral distance, for small earthquake
§ waves propagating through the uppermost mantle for five frequency
bands. Thicker lines show the linear regression; their slopes are
somewhat below the theoretical value of 2. Station Ashio, Japan.
Reproduced from Sato (1989), copyright held by the American
Geophysical Union,

when the wavelengths of inhomogeneity and of wavefield
match (ka is of the order of unity), as was formally shown e.g.
for elastic backscattering by Wu & Aki (1985a). Hence, if,
following Wu & Aki (1985b), we assume the inhomogeneity
field to be self-affine (fractal) in the relevant wavenumber
range, the listed trends imply the corresponding trends for the
inhomogeneity spectrum: it must have a power-law behaviour
(k~*), with the o values in the range 3-4.5, ie. either the
inhomogeneity is self-similar [k™?; Q. lye(f) = const] or it is
somewhat ‘redder’, i.e. the absolute value of « is in excess of 3
(see Wu & Aki 1985b for details).

Let us now correlate this observational evidence with our
modelled envelopes. Putting aside the ‘mix’ model as less
probable, we note that a qualitatively acceptable fit can be
attained by the Gaussian-ACF model with ¢ = 30°—40°, and
by the ‘fractal’ model with & = 3—4: at this choice of parameters,
both produce pulse broadening and at the same time
monotonously decaying codas. At ¢ =20" or & =35, one can
see constant-amplitude codas that have never been reported.
At ¢ = 60° or a = 2, ‘direct pulses’ are delta-like up to p = 1-2:
this means that one would be able to observe body-wave pulses

with a source-related duration at distances of 100-200 km,
which again does not agree with observations. We can thus
bracket the reasonable range of parameters for the two
compared models.

In order to discriminate between the two models, one
can employ the fact that they behave in a radically different
way over a wide frequency range. To see this, imagine a
typical data processing set-up with several frequency bands
independently analysed, with octave bands, and band central
frequencies in geometric progression as (1,2, 4,...). Assume
that we have fitted data of some particular band with the
central frequency f=f, by the theoretical envelope for the
Gaussian ACF with ¢ =40°. Now note that the parameter o
is in fact frequency—dependent: ¢ = 1.41/ka = const/f, so if we
have correctly fitted ¢ =40° in a band with a particular value
of central frequency (f;), ¢ must take different values for other
bands, with other central frequencies. For example, for the
‘neighbouring’ frequency bands with central frequencies f,/2
and 2f,, the value of ¢ will be equal to 80° and 20°, respectively.
Therefore, following the Gaussian-ACF model, we would
expect in the lower (f;/2) band a lack of pulse broadening
and a short (‘source’) pulse up to distances of 100 km and
more, and in the higher (2, ) band up to 40-50 km hypocentral
distance, a very fast decay of early coda, just after arrival, and
then an almost constant coda level during the next 40 s. Both
predictions are inconsistent with the data, which show quali-
tatively similar envelopes for any frequency band within the
0.3-30 Hz range. (This qualitative pattern alone strongly
suggests the fractal character of inhomogeneity).

With the fractal model, the situation is different: its only
critical parameter, u, is unrelated to frequency. The other
parameter, 6,, has been shown above to be irrelevant if small
enough, and we will assume this. Such an assumption means
that the low-wavenumber boundary of the ‘fractal’ behaviour
of the inhomogeneity field is much lower than the wavenumber
of the wavefield under question. Being frequency-independent,
o can be fitted simultaneously over a wide frequency range.
Therefore, the fractal model fares much better, and we consider
it as the preferred one.

We now note a very remarkable fact, namely that the
‘observed’ o range from sources listed in the second paragraph
of this section, 3—4.5, roughly coincides with the « range where
the qualitative observational constraints (monotonous coda
and pulse broadening) more or less agree with our modelled
envelopes. However, these constraints are best met in a some-
what narrower range. Indeed, at « =3, non-zero peak delay
appears only at p ~ 0.9 which seems too far, and at « > 4, coda
shape deviation from the isotropic case seems too large to be
acceptable. Therefore, in terms of the ‘fractal’ model, its
probable parameter can be put within the rather narrower
brackets of a = 3.5-4.

However, even for optimal combinations of parameters, the
quality of the fit of the modelled envelopes is marginal in
the Gaussian-ACF case. Indeed, no really good compromise
can be seen in Fig. 4: the delta-like true direct wave still exists
even for o = 20°, p=10.245, although much reduced, whereas
coda decay is already too fast. The fit is not very good in the
‘fractal’ case either, where for quite acceptable coda, for o« =3,
the abrupt character of the pulse leading edge disappears at
p=0.9, ie. evidently too late, whereas for « =4, coda decay
seems too fast, and the interval where the leading edge is
abrupt is still too wide (up to p =0.6). Curiously enough, the



‘mix’ model gives the best qualitative fit: at the isotropic admix
value of 2 per cent, delta-like onset is suppressed even at
p =0.25, whereas the difference between corresponding coda
and ‘isotropic’ coda is rather small (Fig. 7). However, we are
not inclined to ascribe physical meaning to this result, because
the ‘mix” model does not seem to be a plausible one for the
inhomogeneity structure of the real Earth. There are other
ways to improve the limited success of the fractal model,
primarily by taking into account the strong vertical non-
uniformity of scatterer density (Gusev 1995).

A reasonable fit of observed envelopes by three particular
inhomogeneous models, each with its own parametrization,
suggests that it may be possible to introduce a single general
parameter relating indicatrix shape to the shapes of the corre-
sponding envelope family. The simplest idea is to use the I, to
I, ratio (or {cos f/)). The numerical values of f=1[,/I, that
correspond to an acceptable fit in fact cover rather a wide
interval. Consider numerical values of # that correspond to
the values of model parameters that bracket the acceptable fit.
For the Gaussian-ACF model, for = 20" (40°), f =82 (2.2);
for the ‘fractal’ model, for « =4 (3), f=8.7 (2.4), which is
comparable. However, for the ‘mix’ model (at o =6), for a
fraction of isotropic component equal to 2 per cent, f =32
(we prefer a point estimate here instead of the interval). One
possible cause of such a difference is that despite the fact that
the probability of backscatter (6 > 90°) is much higher in the
last case, this fact does not manifest itself clearly in the
calculation of {cos 0. Nevertheless, it seems that the value of
B =11, may serve as a rough description of the ‘forward-
enhanced’ property of an indicatrix. The search for a more
adequate parameter is an interesting problem for further study.

DISCUSSION

The multiscale (‘fractal’) scattering inhomogeneity structure
was briefly discussed by Gusev & Lemzikov (1983, 1985) and
in more detail by Wu & Aki (1985b). In both studies, a ‘red’
self-affine structure, with the enhanced large-wavelength part
of the wavenumber spectrum, was deduced from the obser-
vational data on § waves and coda from near earthquakes.
Sato (1990) (expanding on Sato 1982) considered the Von
Karman inhomogeneity spectrum (it has a power-law high-
frequency tail producing fractal-like behaviour at high frequen-
cies), and, having combined various techniques, obtained the
rather definite estimate of 0.35 for the ‘order’ parameter of the
Von Karman spectrum; in terms of the power-law behaviour,
this means « = 3.7. From the data on pulse broadening in the
mantle under Ashio station (Sato 1989; Sherbaum & Sato
1991), an a value of 4 could be fairly reliably deduced. However,
Obara & Sato (1995) found parameters of broadening to vary
over different mantle volumes, and their data indicate a range
of # from 3 to 4 for different volumes. Based on array
observations of 2 Hz teleseismic P, Flatté & Wu (1988) arrived
at the comparable model of the scattering lithosphere, which
consists of two overlapping layers with «=0 (depth range
0-200 km), and « = 4 (depth range 15-250 km). We have been
able to show here that the ‘red’ self-affine model (with « =
3.5-4) is in qualitative agreement with the features of observed
S-wave envelopes. This estimate is in excellent agreement with
Sato’s (1990) estimate of 3.7. Note that the « value can (and
does, see Obara & Sato 1995) vary for different Earth subvol-
umes; thus it does not seem meaningful to try to find a point

estimate for the whole lithosphere. We believe that at present
the fractal model with o= 3.5-4 can be considered as a good
reference one, or as a starting approximation in detailed studies.

A tradition in scattering studies is to describe the degree of
scattering by the scattering coefficient «, or by its inverse, I,.
Although these parameters are fully adequate in a theoretical
study, we note that from the point of view of interpretation of
data, I, seems the better candidate as a single parameter: in the
simplest Gaussian-ACF case, it alone defines two measurable
properties of the scattered envelope: the pulse broadening rate
and the late coda level. If the value of =1/, can also be
estimated from the data (and this seems typically a much more
difficult task), the [.—f combination may provide a compact
description of data. (Our own brackets for f are clearly too
wide: 2.5-30). In this case, an observational estimate of I,
(=1,/B) can also be found.

CONCLUSION

We have simulated scattered body-wave envelopes predicted
by models of the lithospheric inhomogeneity and qualitatively
compared the results with the observed patterns. We found
that whereas the Gaussian autocorrelation model is capable of
reproducing observed features reasonably well in any particular
frequency band, it fails to describe observations in the wide
frequency range. An inhomogeneity structure which is near to
a self-affine fractal one seems to be much more likely. Its
wavenumber spectrum must be, approximately, a power-law
one, with an exponent value of around 3.5-4.
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