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Parameters of short period motion radiated by earthquake sources were modeled to provide
a theoretical description of macroseismic patterns. The energy contributions due to the
radiating elements, source components that generate the field recorded by the receiver, were
assumed to be additive. It is suggested that the integral of the square of accelerograms or
the "Arias intensity” can be used as a parameter suitable for predicting intensities (a
modification of an approach developed by F. F. Aptikaev and N. V. Shebalin). The source
of an earthquake is assigned a moment magnitude. Sources are assumed to obey
geometrical similarity. The theory and empirical data are compared for two regions:
Kamchatka-Kurils-Japan and continental North Eurasia. The far-field intensity vs. moment
magnitude relation is practically linear and points to the growth of amplitude acceleration
spectrum in accordance with the squared-omega-model or slightly faster. The method
proposed here was employed to predict intensity in the two regions as a function of
magnitude and distance using the extended source model.

INTRODUCTION

The use of contemporary and historical macroseismic data (usually given as observed
intensities) is an important tool for the analysis and prediction of earthquake hazard. Until
now seismologists relied on empirical relations alone for analyzing intensity maps and
deriving intensity-magnitude-distance relations. This creates difficulties in the way of
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solving practical problems such as extrapolation of moderate amplitude data to large
amplitudes, the transfer of known empirical relations for use in new regions, and
integrated analysis of macroseismic and instrumental observations.

Now the intensity-magnitude-distance relationship (/-M-r) can be analyzed on a
theoretical basis using the short-period radiation of an extended source. In the first place,
recent models of short period earthquake source radiation [4], [28] provide a realistic
average description of the wave field around the source in terms of the field amplitude
parameters. Secondly, there is a better understanding of a relation between macroseismic
intensity I and wave-field parameters. Gutenberg and Richter [20], Kanai [25], and many
other workers on the lines of these pioneers compared intensity to peak acceleration a,,
or to the peak velocity V,,,, of ground motion. New prospects are offered now by integral
ground motion parameters such as the combination @, d [1], [2], where d is ground-
motion duration, or another similar parameter, the maximum ordinate of acceleration
Fourier spectrum F,_,, [14]. These parameters incorporate ground motion duration, which
is necessary to account for the fact that the actually observed damage to buildings and
engineering structures is greater for longer durations of ground motion at a constant
amplitude. The modeling of the I(M, r) relation based on wave field parameters will
presumably provide a better description and prediction of intensities than is possible on
a purely empirical basis.

The model of the wave field near an incoherent source and the I(a,,,, d) relation were
first combined by Gusev [4], who derived a first theoretically sound I(M, r) relation.
Earlier Evernden [21] suggested the use of a semiempirical model for an extended
macroseismic source treated as a sequence of point sources. Here we develop this
approach further. Departing from the crude source model [4] represented by a disc of
constant radiation intensity, we use a somewhat more realistic model of a rectangular
source. For this source we derive models of isoseismals and, based on these, a relation
of intensity I versus moment magnitude My, and distance r.

The use of the seismic moment M, or moment magnitude My, as an integral measure
of earthquake source power instead of ordinary magnitudes is an important part of our
approach. It is this circumstance that can hopefully provide a reliable extrapolation of
empirical data represented by the I(My, r) relation to extremely large magnitudes.

Empirical data of two kinds are used here to find the model parameters:

IMy, )| 2100 =T100(My),
I(My,7)| My =const =1()-

The result is a new scheme of calculation suitable for the practical prediction of
intensities and modeling the near-field isoseismals. By eliminating the difficulties inherent
in the existing methods, this new approach enables one to take into account the fact that
the intensity of shaking is saturated near an extended source, avoid potential errors due
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to the internal nonlinearity and saturation of intensity scales, and obviate the problem of
choice between the Covesligetti and the Blake-Shebalin formulas [15].
The model proposed here was developed and tested in two seismic regions of Russia.

GENERAL PRINCIPLES OF MODELING INTENSITIES BASED ON PHYSICAL
PARAMETERS OF GROUND MOTION

The first requirement for a practical modeling of intensities is to find a specific relation
connecting intensity and physical parameters of ground motion. Gutenberg and Richter
[20] put forward the relation

I=3lga_, +const, 1)

max

where a_,, is peak ground motion acceleration. Shebalin [16] summarized data from the
literature to corroborate (1) as an average relation accompanied by a large data scatter.
This relation was repeatedly revised. Medvedev [8] and Shebalin [16] proposed the form

I=3.31ga_. +const. 2

max

to serve as a standard for the most important intensity range of V to VIII. Also, Shebalin
[16] remarked that the I(a,,,) relation was actually nonlinear. Based on a sequence of
preliminary studies, Aptikaev and Shebalin [2] proposed a relation of the form

I=f(lga,,, +0.5lgd,) +const, 3

where d, is the duration defined by F. F. Aptikaev as the length of that part of the
accelerogram where amplitudes are above 50% of the maximum. The function f was
specified in tabular form and expressed the nonlinearity referred to above; for the range
I = VI-IX it is close to

1=3.331g(a,, d5°) +const. @

max

Kanai [25] suggested a relation to be sought between intensity and peak ground velocity
Vinax- Medvedev [8] recommended the relation

1=3.331gV_, +const. ®

ax

Chernov [14] noted a close relation of intensity to the maximum of acceleration spectrum
F,,.. Housner [24] suggested relating I to the area under the plot of velocity response
spectrum.

The approaches advocated by F. F. Aptikaev, N. V. Shebalin, Yu. K. Chernov, and
in part by G. Housner, all pivot on the use of an integral characteristic of ground motion
instead of a peak value; this is consistent with what is observed in the destruction of
buildings. The simplest integral characteristic is the integral of the square of ground
acceleration:
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A= [ a(ndt, ©)
where a(?) is an accelerogram. The quantity 4 was called the "Arias intensity". Denoting
Ag=al..d, )

we notice that Arias’ 4 and Aptikaev-Shebalin’s A, are similar in physical meaning.
Besides, A = F?,,,/2Af, where Af is an effective frequency width which can to a first
approximation be treated as constant. The basic quantity for this study will be A.
Unfortunately, the relation between A and I was not examined. For our derivation of
empirical formulas we assume this relation to be linear and close to the 4,5/ relation.
Now using (4) we get

I=C,lgA +const. ®

Using the usual relation d Ig a,,,,/0] = 1g 2, we put C, = 1.667 in accordance with
(4). The method of calculation used below enables some small deviations of C, from the
adopted value to be corrected.

We now describe how the A field around a source can be found. Following [4], we
assume the source to be an area whose elements emit high-frequency (short-period)
radiation independently of one another (incoherently). That means that the contributions
due to different component areas are summed at a receiver in energy (the total
instantaneous power equals the sum of the instantaneous powers which are the
contributions due to elementary sources, the same being true of the energies). For the case
in hand this means that, at a receiving site, one has

N

a*( =Y al (@, ®
i=1
N

A=Y 4, (10)
i=1

where a(7) and 4; = | a(?) are the accelerogram and the contribution into 4 which are
due to elementary source i (i = 1, 2, 3,..., N). To find 4, we first define a standard
function ®(7) governing the attenuation of the Arias intensity due to a point source as
follows:

A() =A(ry)® (M) /2(ry), (11)

where r, is a standard distance. We put r, = 1 and ®(r,) = 1 for simplicity. The
elementary source is assumed to be small and isotropic, so that

A4,=ES(), (12)

where r; is the source-receiver distance and E; the "energy” of an elementary source,
defined as the A4; for unit distance.
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It can be supposed that the main contribution into ground motion is due to S waves
whose radiation pattern (for the square of the acceleration vector length) is centrally
symmetric and does not contain any nodal lines. This pattern is close to spherical, because
the source anisotropy due to the radiation pattern is almost never seen in the isoseismals.
For this reason we thought it possible to use the model of an isotropic elementary source.

When the attenuation function ®(r) is known and the positions of elementary sources
with some E; are specified, then relations (8), (10) and (12) can be used to deal with
practical problems arising in calculation of intensities. One can adjust theoretical
isoseismal maps for specified sources, actually solving the inverse problem of radiator
structure by the trial-and-error method or examine the average I(M,, r) relation by
calculating intensity fields for simple source geometries, the magnitude being varied as
a parameter. The second procedure will be discussed below. Before coming to the scheme
of calculation, we discuss the choice of ®(r).

It can be seen from maps of actually observed isoseismals that the very description of
attenuation in terms of a distance function is oversimplified and is unable to explain the
often rather complicated structure of these maps. However, this approach can be
considered acceptable for the restricted purposes of the present study. The well-known
intensity attenuation laws due to Blake-Shebalin and Covesligetti [15]

I(r) = &,(M) - Clgr, (132)
I(n) =®,(M)-Clgr-gqr, (13b)

the latter being a generalization of the former, suggest a slightly modified conventional
attenuation model

®(r) = r'z"exp(—r!rQ) =g(r,n,r,). (14)

With the right choice of the exponent # and a narrowband accelerogram (the mean
frequency is f;) one has

ro=cQ(f)/2xf,, (15)

where ¢ is S-wave velocity and Q is an S-wave Q-factor. When Q(f;) = Qf', which is
often a realistic assumption, then 7, (the distance over which the "energy" is attenuated
by a factor of e, see (15)) is independent of the frequency, so relation (15) is valid even
for a broadband acceleration spectrum.

When neither of the above variants works, and when the parameter n or the coefficient
Ca were chosen wrongfully, the estimation of 7, from observations no longer has a direct
bearing on the shear-wave Q-factor, becoming merely a fitted constant.

A more complex attenuation model may arise in some regions, consisting of two
branches with different n and ry:
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glr,n,,r,,) for r <rg;

s vl c (14a)
csg(r,nz,rgz) for r >re,

where ¢, = g(r¢, ny, ro)/8(re, My, Ty); 7 is the distance at which the attenuation law is

switched from the first branch with parameters n,, ry, to the second with n,, 7.

CALCULATION OF THE MEAN / (M., r) RELATION

This relation was modeled on the basis of the simplest source concept (Fig. 1), assuming
it to be a rectangle with length L = L(My) and width W = W(My). The "luminosity" of
the source was assumed to be constant within the source area; that means that the energy
E; is proportional to the area S; of the elementary radiator i:

E,=C;S,. (16)

Figure 1 Scheme for intensity calculations: C - hypocenter, C' - epicenter of a rectangular source
L long and W wide at depth H dipping at angle ¢; the XY plane is the ground surface; P is
observation site ("receiver”); r is hypocentral distance; r; is the distance to i-th subsource; the
rectangle on the XY plane is the projection of the source onto the ground surface, the bold side
showing the projection of the top of the source; curves on the XY plane are isoseismals due to this
source.

Theoretical elementary radiators were obtained using a rectangular grid made by dividing
L and W into N; and Ny, identical segments; the total number of radiators was then N =
NNy, and all S; were identical:
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S, =SIN, a7

where § = LW.

Gusev [4] hypothesized that the mean flux of short period power P = d&/dSat (¢ being
the short period seismic energy of the source) was constant for earthquakes of different
magnitudes. If Py, is constant, we assume geometrical and kinematic similarity

L~W~T~M;®~10%" (18)
(T is the rupture time) and put E = } E; ~ &; we then have
E ~ =P, LWT ~M, ~ 10"°M~, (19)

Hence, using (12), (10), and (8) successively, we obtain for the far zone:
I1=CyM, +const (20)

with G, = 2.5, which is obviously in contradiction with the conventional empirical
relation I = 1.5M,4+const, since dM; /My = 1. This implausible result along with
some other arguments (see [5]), makes one to reject the idea of a constant P,,.

There is another hypothesis that looks more likely at present, namely, that the specific
(per unit area) short period energy density P, = d¢/dS of the source radiated by a small
area of the source plane during the entire rupture time is independent on the average of
how large the source is, which contains this small area (independent of the magnitude).

The hypothesis of constant energy density instead of (19) gives

E~eg=PLW~MZ®~ 10M @1)

and C; = 1.667 in (20); this is quite acceptable.
In virtue of the assumption F%,,, ~ A ~ E, relation (21) also gives (for the far zone)

Fo. ~a(f) ~M”, 22)

which is consistent with the properties of the well-known Aki-Brune w~2-model [18]. We
also note that this basic assumption of numerical similarity between A (6) and A,g (7)
neglects the fact that A, involves a peak rather than an rms acceleration. Analysis shows
that for this reason the empirical Cy, should be expected to differ from the estimate based
on (21), slightly exceeding it; therefore, Cy, should preferably be found empirically (see
below).
In accordance with the similarity hypothesis (18), we put
My, =1gS+Cys. 23)

Here, Cys = 4.1, S being in km?. The value of Cys is borrowed from [6] where it was
based on data available in the literature, [26] in the first place.

To sum up, specifying My, or S for a source and using (16) one could find the E;; then
A; via (12) from E;; then, A via (10) from A4;; and finally, I via (8) from A. However, one
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must first determine the numerical values of the constants in (8) and (16). This can be
done by calculating the parameters of the radiation field based on realistic source spectra
and propagation paths, the final step being to use the X(a,,,, d) relation tabulated by
Aptikaev and Shebalin [2]. The procedure is rigorous, but very cumbersome. For the time
being we circumvented these calculations by calibrating (8) and (16) based on a basic
empirical intensity /;, corresponding to a fixed basic combination (My, r) = (My, 7).

We now are going to demonstrate that I can indeed be determined, and derive the
relevant formulas. Suppose a combination (M,, r;) is specified and the value I, = I(M,,
r,) is known; also, L and W of the source and its spatial position are given (see Fig. 1).
It is required to find I at some "receiver" site (P in Fig. 1). The value of r will be found
as a distance between the site and the center of the source. We find § = LW and the areas
of elementary radiators using (17). The magnitude M, is used to find the area of the basic
source S, using (23). Specifying a reasonable ratio of length to width for the basic source,
we can determine the source dimensions L, and W,.

The relation between I and I, is more conveniently found, when one is dealing with
the far zone for the time being. Take some large ' > L; r' » L,; then all r; are
approximately equal to r'. The values of I/ = I’ and A = A4’ at distance r’ are functions
of My, only. Let us imagine the unknown I’ to be fixed and express I = I(r) in terms of
I' = I'(r). In virtue of the isotropy assumption /' does not depend on the ray chosen.

For the field of elementary radiator i at distance r’, we derive from (10) and (8),
assuming the relation C, = 81/dA to be valid,

A';=A'IN, (24)
I';=C,1g[(1/N) x 10”4 =I' -C, IgN. (23

The field of the same elementary radiator at distance r; has the form
A=A 2(r,/9(r), (26)
I,=I'-C,1gN+C,1g(®(r)/®(r"). @7

Summing the effects due to all elementary radiators at the receiver sife. we get
A=Y 4,=Y4",80)/%(), (28)

N
, 2
I1=C,1gy 107" =1"+C,{1g (NI &(r)) | -1g2(r) —
1}

An exactly similar procedure yields the relation of I, to intensity I’, at diStance r’ for the
basic earthquake by partitioning the source of the basic earthquake into K elementary
radiators:
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K
I,==1',+C,{1g [(UK)Z: ®(ry) | -1g2(") e
J

where r,; is the distance from the receiver to elementary radiator j in the basic source.
The receiver is assumed to lie on some (basic) ray at distance r, from the center of the
basic source, the basic ray pointing along the normal to the source plane.

In order to relate I’ to I', we assume, in accordance with (20), the existence of a
relation of the form

I'=I', +Cyy(My,-M,), 31)

with the Cy; not very different from 1.67.
Combining (29), (30) and (31), we get

N K
I=I,+C,M,-Mp)+C,11g |:(1,’N)E d»(r‘.):| -lg [(IIK)E <I>(rj)i| (32)
i J
We have ultimately arrived at the master formula to calculate intensity 7 at a site distant
r from the center of a rectangular L X W source.

It is advisable to consider a slightly more general case, namely, elementary radiators
(er) with variable energy ("luminosity").The luminosity of an elementary radiator can be
conveniently described in terms of the effective (ef) area:

Sef.i =piser’ (33)

where p; is a weight (so far all weights were equal to unity). The matrix p; specifies the
luminosity distribution over the source area. One can see that for (32) to remain valid in
the general case, it is sufficient to replace 1g(1/N) §, ®(r;) with 1g( ¥ p&(r)/ L p;) in it. The
magnitude My, of such a source could be defined as

My, =1g) " Se;;+Cys. 34)

where My, is the "macroseismic magnitude" which has no longer to be equal or close to
the true moment magnitude, because the proportionality assumption (16) has been
dropped.

Formula (32) can be used with the receiver taken at various sites on the ground surface
to find 7 at the sites and plot a map of isoseismals; choosing one or several characteristic
rays, one can derive the I(My, r) relation. There is good reason to vary the L/W ratio for
different My,. Further, L/W was gradually varied from unity (at M, < 5) to three (at
My = 9).

The description of an inhomogeneous source structure in terms of p; makes it possible
to deal with forward and, later, inverse problems for the first one or two isoseismals. For
the lower isoseismals one cannot hope to model actual maps by specifying the attenuation
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as ®(r); a 3-D attenuation structure should be used. These possibilities were not explored
in the present study.

Figure 2 presents an example where a map of isoseismals was obtained using the
above algorithm for a rectangular source of L = 155 km and W = 52 km dipping at 30°
relative to the vertical; its center was at 40-km depth, the longer axis was horizontal, and
the number of subsources was 61x21. The other parameters were as follows: C, =
1.667, Cy = 1.85, the attenuation obeys (14) with n = 1 and r, = 90 km, L,(My, = 8,
r, = 100 km) = 7.75 intensity units.

Figure 2 Map of modeled isoseismals due to a My, = 8.0 source at 40 km depth. Arrows show
lines 1 through 6.

Figure 3 shows intensity as a function of distance along several differently oriented
lines specified in Fig. 2. Also, we determined the intensity as a function of the radius of
a circular isoseismal that encloses the same area as does the observed one, this being the
usual procedure when dealing with intensity maps. It turned out that the resulting curve
was very similar to that along line 2, which had passed through the source center at an
angle of 45° to the source axis.

It is important to choose the right interval for the grid of elementary radiators.
Distortions are likely to arise with an excessively large interval (Fig. 4). As a matter of
fact, the interval should be slightly shorter than the distance between the source and the
closest site on the line. Besides, the method of calculation itself relies on the idea of
incoherent radiation, but this becomes unjustified at source-receiver distances of the order
of the wavelength [4], [5]. Consequently, we did not deal with distances below 5 km.



MODELING INTENCITY-MAGNITUDE-DISTANCE RELATION 453

MSK intensity

510 25 50 100 250 500
Distance along lines, km

Figure 3 Curves of intensity versus distance along seismic lines (see Fig. 2). Numerals at the
curves refer to the lines in Fig. 2.

MSK intensity

L 1

8 20 40 80 200 400
Distance from center of source, km

Figure 4 Intensity vs. distance in relation to the number of subsources. Line / is as in Fig. 2;
I - source at depth 0 km, II - at 40 km. Number of subsources: ] — 1X1; 2 - 3X1; 3 - 11X3;
4-21%7;5-61x21.
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DETERMINATION OF EMPIRICAL I (My, r» RELATION AND OF
PARAMETERS INVOLVED IN THE THEORETICAL (I-M-r) LAW FOR THE
KAMCHATKA-KURILS-JAPAN REGION

The approach developed here was tested by deriving I(M, r) for the Kamchatka-Kuril-
Japan region. The region was assumed to be homogeneous as to the properties under
investigation. We began by testing the linear relation, assumed in (20), between the
far-zone intensity of shaking and M, and finding the coefficient in that relation. To do
this we used the Kawasumi- method [27] to compare M, and I, the intensity at a fixed
distance (100 km from the source). Having thus found the /(M) relation, independent
data were used to determine the I(r) function.

Our determination of ,y(My) based on Kamchatka and Kuril seismicity (see Table 1)
is summarized in Fig. 5. This determination was mainly based on the (/) for individual
earthquakes [9]; where no intensity had been recorded at 100 km distance, the relevant
value was interpolated or extrapolated from closest-lying ones (within 20 km). It should
be noted that, even when intensities are satisfactorily known on the coast, the I, of many
large earthquakes cannot be found with certainty owing to unreliable epicentral coordinates
and the resulting uncertainty in the distance.

MSK intensity
10

Figure 5 Intensity vs. My, at 100-km distance for the Kurils, Kamchatka, and Japan: I - data
points; 2 - linear regression; 3 - orthogonal regression for data points shown; 4 - Hashida relation
for Japan [22], [23]; 5 - curve for Kamchatka [13]; 6 - recommended I,,q(My) relation.
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Table 1 Earthquakes used to determine I,

Date (month, Magnitude Date (month, Magnitude
year year
MU:' MW IIOD Mu:r MW J'1|th:|
Kamchatka 03.1964 6.0 6.02 2.0
10.1928 6.1 6.1 5.5 05.1964 6.8 6.6 6.5
11.1929 6.1 6.1 5.5 06.1964 72 6.99 6.0
03.1934 6.3 6.23 4.0 03.1966 59 5.95 4.5
08.1947 6.2 6.15 5.0 06.1966 6.0 6.02 6.0
11.1952 8.5 9.0 8.35 01.1968 7.2 6.99 5.0
05.1959 7.6 7.44 7.5 02.1968 6.5 6.38 3.5
10.1969 77 7.56 6.6 07.1968 6.0 6.02 4.0
12.1971 7.8 7.7 7.0 08.1969 8.2 8.16 7.0
09.1974 5.8 5.89 4.5 08.1971 6.4 6.3 5.0
04.1975 6.0 6.02 3.0 02.1973 7.5 7.32 6.5
04.1975 6.2 6.15 3.0 03.1973 6.3 6.23 4.7
01.1976 6.3 6.23 5.5 04.1973 6.3 6.23 4.5
01.1980 6.1 6.1 3.5 06.1973 7.9 7.8 7.1
01.1980 6.0 6.02 3.5 06.1973 6.5 6.38 5.6
03.1980 37 5.7 5.5 06.1973 6.0 6.02 5.0
11.1980 6.8 6.6 4.0 06.1973 6.4 6.3 3.5
01.1983 6.1 6.1 3.0 06.1973 7.4 7.2 73
12.1984 7.5 7.32 5.5 06.1973 6.0 6.02 5.0
01.1989 6.4 6.3 3.5 07.1973 6.5 6.38 4.0
05.1989 6.4 6.3 5.0 08.1973 5.8 5.89 4.0
Kurils 09.1974 7.2 6.99 5.0
03.1952 8.3 8.24 8.0 06.1975 72 6.99 5.6
03.1952 6.8 6.6 5.0 06.1975 6.7 6.48 5.5
03.1952 6.5 6.38 5.0 06.1975 7.0 6.78 5.0
03.1952 7.2 6.99 5.8 06.1975 6.7 6.48 3.6
03.1952 5.9 5.95 4.5 01.1976 72 6.99 5.5
03.1952 6.0 6.02 3.7 03.1978 7.9 7.8 7.2
04.1952 6.0 6.02 5.0 02.1980 7.2 6.99 6.0
04.1952 6.2 6.15 5.5 02.1980 6.4 6.3 3.5
05.1952 6.5 6.38 4.0 12.1980 6.9 6.69 4.4
07.1952 6.2 6.15 55 09.1981 6.7 6.48 6.5
05.1953 6.2 6.15 5.0 11.1981 6.0 6.02 4.0
07.1953 6.9 6.69 5.0 02.1983 6.3 6.23 4.7
10.1953 6.0 6.02 4.8 03.1983 6.1 6.12 4.0
11.1958 8.2 8.16 9.0 04.1983 6.6 6.42 5.7
01.1961 5.9 5.95 4.5 12.1984 6.5 6.38 4.5
02.1961 7.0 6.78 6.0 05.1985 6.7 6.48 5.4
10.1963 8.1 8.1 7.0

A significant problem was caused by the conversion of M, magnitude to be found in
most catalogs to the moment magnitude My, which was preferred for the problem in
hand. We used all seismic moment (M, or My,) determinations that could be found in the
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literature. In cases where neither was available, M, ,; was converted to M, using regional
regression curves [6] specially derived for the purpose.

The macroseismic data on Japanese earthquakes were used in the form of a J(M)
relation based on them:

J100 =1.5M,-6.2. (35)

The above relation was obtained by Hashida [22], [23] from a large amount of
macroseismic data; the intensity J was that on the Japanese 7-grade JMA scale, the
magnitude being that on the Japanese scale M,,,(M;). The conversion of JMA intensity
to the 12-grade MSK scale was carried out by directly interpreting the descriptions for
each intensity in the JMA scale [3] to find the corresponding MSK intensities [7]. The
following relations were obtained:

Scale Intensity
JMA 1 2 3 4 5 6 7
MSK 2 3.8 4.7 6.0 7.0 9.0 (10.5)

The relation can be represented to within satisfactory accuracy as a broken line:

7.1+1.2(J-5); J<S (36)
7.1+1.9(J-5); J>5

Using (36) and the regression curves connecting M, ,, and M, from [6], and we converted
the Hashida relation (35) to the M, and MSK scales.

One can see from Fig. 5 that the data points for Kamchatka and the Kurils are in good
agreement with the modified Hashida relation for Japan, so that the two regions can be
regarded as being of one and the same type.

When observations are compared to the I;(M,,(My)) relation derived from the
macroseismic equation obtained for Kamchatka [13]

I=15M,,-2.631gr-0.0087r+2.5, (7

it transpires that (37), which is presently in use, is an upper bound on the data points,
overestimates the intensity compared with the observations, and has to be replaced.

A new relation to be recommended for use was derived by, first, fitting a linear
regression line /(My) to the data points in Fig. 5. The result can be written down as
follows:

1,00 £0.85 = (1.54 £0.15)M, +(-5.0 +0.998). (38)

This line (marked 4 in Fig. 5) is a moderately satisfactory description of 1, data for the
Kurils, Kamchatka and Japan. A slightly better fit was obtained with the line that
represents the orthogonal regression (marked 3 in Fig. 5)
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I,00 £0.87 =(1.77 £0.15M, +(-6.5 +£1.0). (39)

However, the theory developed here enables one to incorporate, not only the far-zone
linear relation I,(My,), but also the trend toward a saturation of I, with a source size
of = 100 km. A theoretical relation connecting /,,, and My, (line 1) was derived assuming
Cy = 1.85. This value of G, was found by a trial-and-error method. The vertical level
was then fitted by minimizing the mean error. This level was specified by setting
Lw(My=8) = 7.75 intensity units. The resulting curve (marked 6 in Fig. 5) is the
estimate of I;(My,) recommended for use.

The next step was to fit the attenuation law ®(r). It should be emphasized that the
attenuation in the region shows marked lateral variations, so that the result of this part of
the present study provides merely a very smoothed picture. It was supposed that the
attenuation curve in [13] which had been fitted to observations made in the Kurils and
Kamchatka was a good representation of the empirical trend. The shape of the curve was
simulated by the simple law (14) where we set n = 1 as representing the leading part
played by S waves (direct or scattered at small angles). The fit was thus reduced to
estimating of r,,. Figure 6 displays a series of theoretical I(r) curves for My, = 8 and a
range of 7, values. Also shown is the corresponding empirical curve (37) which describes
the observations in the distance range 50-500 km. All of these curves have a common
point, Z;\(My,=8) = 7.75 (I, = 7.75 at M, = 8 and r, = 100 km). The value r, = 90
km emerges as the optimal from comparison of the theoretical curves and the empirical
relation. Assuming the characteristic frequency of the acceleration spectrum to be f; =
2 Hz under these conditions, we arrived at the value Q = 2xfir/c = 280 with an average
crust-mantle velocity of 4 km/s. This value is consistent with the estimates of shear-wave
Q in the Kamchatkan lithosphere [17].

Figure 6 also shows theoretical /() curves for other values of My, a fixed r, = 90
km, and the same J,, My, and r,. The resulting family of curves is a graphic picture of
how source dimension influences intensity attenuation. The curves for My, = 8, not to
speak of My = 9, flatten out close to the source compared with those for lower
magnitudes, thus demonstrating the saturation effect.

DETERMINATION OF THE EMPIRICAL / (M,,, ) RELATION AND THE
PARAMETERS OF THE (/-M-r) MODEL FOR CONTINENTAL NORTH
EURASIA

The model parameters for continental North Eurasia were determined exactly as was done
for the Kamchatka-Kurils-Japan region. Continental North Eurasia contains several
continental seismic regions of the former Soviet Union. The first step was to investigate
I(My,) relations at two distances from the source, namely, 30 (Z;,) and 100 km (/,o). The
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data to which the relations were to be fitted were taken from [9] and treated as described
for the Kamchatka-Kurils-Japan region. The M,,~M,, conversion was based on the
nonlinear relations from [6].

MSK intensity

" .\ ‘0 ‘.
L L 1 1 1 L

] 10 25 50 100 250 500

Distance from center of source, km

Figure 6 Curves of intensity versus distance for the Kurils-Kamchatka-Japan region: / - based
on data from [13]; 2 - based on our model with ro = 90 km; 3-6 - calculated for this model with
My, = 8 and r,, equal to 50, 70, 130, and 200 km, respectively.

Figure 7 shows the relations between magnitude My, and intensity of shaking Iy, at
100-km distance from the source based on data of 303 earthquakes. The standard
(average) I(My,) relation due to Shebalin [9]

I=M,,-3.5Igr+3.0 (40)

(marked 2 in Fig. 7) was found to be in good agreement with the observations (7 in Fig.
7). Therefore, the standard level for I(My,) was chosen to be the well documented point
corresponding to M4 = 6.0 (My, = 6.23), r = 50 km, and , = 6. The theoretical IMy)
relation (5 in Fig. 7) was derived upon the assumption C,, = dI/dM = 1.85, similarly
to what we did above. The resulting relation was practically identical with the standard
Shebalin formula, except for the highest magnitudes. The standard linear regression IMy)
based on the experimental data points yielded C,, = 1.42. The relevant curve in Fig. 7
(3) was a poor fit to the data for higher My,. The orthogonal IM,,) regression yielded
Cyu = 1.68; the relevant straight line in Fig. 7 (4) was a good fit in the entire range of
M,, and was close enough to the Shebalin curve.
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MSK intensity
-

o
o0

My,

Figure 7 Intensity vs. My, at 100-km distance for continental North Eurasia: ] - data points;
2 - Shebalin relation [9]; 3 - linear regression; 4 — orthogonal regression for data points shown;
5 - recommended I;n(My,) relation.

We tried to detect differences in I;(My,) between individual regions of North Eurasia
such as the Caucasus, Kopet Dag, Baikal, etc. We did not succeed in detecting any
significant regional differences in the slope or absolute level of the curve based on the
available amount of macroseismic data.

Figure 8 presents relations between M, and intensity of shaking I, at a distance of 30
km from the source based on data of 164 earthquakes. The standard linear regression (3)
yielded G, = 1.63, but was no good fit either at high M;,. The orthogonal regression (4)
was a better fit to the data points, the value of C,, being 1.82. The Shebalin relation (2)
was a satisfactory fit, whereas the line representing the Rautian formula [10] when
converted to My (5) showed a too low slope. The theoretical /(M,,) relation (6) with
Cy = 1.85 yielded the best fit to the data points shown in this plot.

Summing up, the theoretical curve with G, = 1.85 is a good fit to the data for
continental North Eurasia at the distances 30 and 100 km, even though it is at variance
with the formal standard linear regression line. However, the latter ignores the few data
points at high magnitudes by the method it uses data, so that the standard linear regression
estimate of Cy can be regarded as the lower bound.

An attempt to specify the attenuation law ®(r) using (14) led to an unsatisfactory
result: J values were overestimated at large r and high M. The use of (14a) with n; = 1,
n, = 0.5, and Tor = Top and r, = 70 km fitted the data well. Trying several values of
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MSK intensity

10

My

Figure 8 Intensity vs. My, at 30-km distance for continental North Eurasia: ] - data points; 2 -
Shebalin relation [9]; 3 - linear regression; 4 — orthogonal regression for data points shown; 5 -
recommended I;o,(My,) relation.

ro, we preferred r, = 100 km (Fig. 9). Corresponding to it is Q@ = 314 for the selected
characteristic frequency 2 Hz. An internal control on the method was possible thanks to
the availability of independent observations at distances 30 and 100 km. As pointed out
above, the slopes in the intensity-magnitude relation were consistent, and so were the
absolute levels of the relations.

Figure 9 presents theoretical /(r) curves for My, = 5-8, as well as empirical curves
obtained by Shebalin’s formula. The theoretical and empirical curves are in satisfactory
agreement, except at short and large distances for high My,. The Shebalin formula is
grossly inadequate at short distances by overestimating the effect, because it disregards
the source dimension, while at large distances it errs by inaccurate incorporation of path
attenuation. The model curves clearly take the source extent into account: those for
My, = 8 are flattening close to the source compared to the curves for lower magnitudes.

DISCUSSION OF RESULTS

It is an urgent problem to deduce macroseismic patterns by using the wave theory for
incoherent radiators. The first attempt at doing so described above was a success. The
parameters in (32) for two regions were determined.
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MSK intensity
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Distance from center of source, km

Figure 9 Intensity vs. distance for continental North Eurasia: I - our model with r, = 100;

2 - Shebalin relation [9]; 3, 4 - calculated for our model with My, = 7 and r, equal to 70 and 150
km, respectively.

Kamchatka-Kurils-Japan: C, = 1.667, Cy =185, n =1, r, =90km, }, =
IM, = 8, r, = 100 km) = 7.75 intensity units, Cy;s = 4.1.

Continental North Eurasia: C, = 1.667, Cy = 1.85,n, = 1,n, =0.5,7y =715 =
100 km, r, = 70 km, I, = M = 6 My, = 6.23); r, = 50 km) = 6.0 intensity units,
Cys = 4.1.

The models were tested for correctness and found to be adequate, namely: the /(M)
relation at r, = 100 km was close to linear; the slope of the line was 1.85, therefore, as
expected (see our comment on (22)) was slightly higher than 1.667, the latter value being
relevant to a spectral w~>-model; the I(r) relation was consistent with the hypothesis of
short-period energy generated by a point source propagating as S waves in a homogeneous
earth with Q ~ 300 at 2 Hz.

Remarkably enough, the values of Q for these two major regions were satisfactorily
similar, the regions being essentially different as to geometrical spreading. It should be
noted that the estimates of Q derived from macroseismic data were meaningful enough.
These estimates relied on the attenuation of (spectral) power rather than of peak
amplitudes, hence were fairly well consistent with determinations of Q, this parameter
relying precisely on energy attenuation. It is appropriate to say that the propagation of
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seismic waves over regional distances involves lengthening of wave trains with increasing
distance due to scattering and dispersion. Hence the difference between the attenuation
laws for peak amplitudes and spectra: increasing record duration an extra factor to reduce
the peak amplitude.

CONCLUSION

We represented the earthquake source as an incoherent radiator which has a constant (over
the source plane area) density of seismic energy combined with the relation of intensity
to ground motion parameters using the approach of F. F. Aptikaev and N. V. Shebalin.
This enabled us to model the basic macroseismic relation (I-M-r) successfully for specific
regions, namely, Kamchatka-Kurils-Japan and continental North Eurasia.

One important advantage of this approach is the automatic incorporation of three
nonlinearities which tend to distort interpretations of macroseismic data when treated by
conventional techniques: (1) saturation of intensity close to the source; (2) nonlinear I(Iga)
relation; and (3) magnitude saturation at high M,.

The simplicity of the scheme of calculation suggested here enables it to be included,
instead of formulas for the calculation of I(M, r), into algorithms needed for seismic
zonation and seismic risk assessment. This procedure removes the problem of overestimat-
ed intensity at short distances and automatically models the ellipticity of isoseismals due
to the source extent.

Our /-M-r model was used for making a new seismic zonation map of North Eurasia
[11], [12]: the map for the Russian Federation (GSZ-97) was adopted as the basis for a
new version of the Construction Norms and Specifications (CNiP-P-7 as abbreviated in
Russian).

This work was supported by the Russian Foundation for Basic Research, project
97-05-65056.
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