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Abstract—Time sequences of earthquakes with removed aftershocks often possess the property of grouping,
forming groups (clusters) of events on the time axis. The special phenomenon of order grouping, in contrast to
the similar “ordinary” grouping, is examined in the paper. This phenomenon manifests itself in any time-
ordered sequence of events of various intensities and consists in the fact that the largest events in such a
sequence exhibit the tendency toward grouping. The length of time intervals between events is insignificant in
this case. Ordinary and order groupings are different phenomena that can be independent of each other. Ten-
dencies toward grouping of both types can be of multiscale nature. This study revealed multiscale order group-
ing of earthquakes from world catalogs of 1900-1989 (Abe) and 1977-2000 (Harvard CMT) and estimated its

characteristics.

INTRODUCTION

The statistical structure of time sequences of events
has been extensively studied. The consideration of
events as belonging to the same type is often justified,
and in this case there are known such models as the
“purely random” Poisson process and its generaliza-
tions, the recovery process, and others. Models more
adequate in a number of problems are processes with
unlimited aftereffect (in particular, multiscale self-sim-
ilar processes such as fractal and multifractal noises).
An approach considering earthquake sequences as self-
similar objects has been successfully developed [Pro-
zorov, 1982; Rykunov et al, 1987; Smalley ez al.,
1987; Kagan and Jackson, 1991; Ogata and Abe, 1991;
Hirabayashi et al., 1992; Stakhovsky, 2000]. At a qual-
itative level, the self-similar behavior is characterized
by the tendency toward the formation of groups (clus-
ters) of events closely spaced in time that have various
scales and do not exhibit explicit periodicities. After-
shock sequences and earthquake swarms are the most
noticeable phenomena of this type. Such short-term
grouping is well known and is not the object of this
study. We are interested in the tendency toward long-
term grouping [Ogata and Abe, 1991; Kagan and Jack-
son, 1991] observable on larger time scales (usually
longer than half a year). Therefore, we analyze
sequences (catalogs) that do not contain aftershocks.
The tendency toward long-term grouping of occurrence
times of events (below, referred to as ordinary group-
ing) has already been discovered for several data sets
and one more study of this tendency is not of great
interest. The approach applied in this paper to the study
of grouping consists in combined analysis of times and
seismic moments (“weights”) of catalog events.

As has been well known since the times of Guten-
berg and Richter, the distribution of earthquakes over

energy or seismic moment is close to a power (hyper-
bolic) law with the exponent b = 0.6-0.7. Under these
conditions, the tectonic contribution of the several larg-
est events is predominant within any specific catalog.
However, the properties of grouping as studied up to
now characterized primarily the most numerous events,
which have the smallest magnitudes and thereby con-
tribute relatively little to tectonic processes (and seis-
mic hazard). Our approach takes into account the
weight of events explicitly. Below, we define an effi-
ciency function characterizing the generation rate of the
seismic moment or energy (or, in other applications,
mass, volume, etc.)

Since the ordinary grouping is a widespread phe-
nomenon, two questions arise in relation to a concrete
catalog: (1) whether the efficiency function describing
a given process possesses properties of self-similar
behavior and, if so, (2) whether this self-similar behav-
ior is a consequence of the ordinary grouping of indi-
vidual events (points) or has a more general nature. The
second alternative is realized as a possible occurrence
of such a specific phenomenon as the order grouping.
This phenomenon can either supplement the well-known
ordinary grouping or arise independently. The order group-
ing can be present in any time-ordered sequence of events
of various intensities and consists in the tendency of the
largest events of the sequence to be near neighbors. The
ordinary and order groupings are qualitatively different
phenomena, and methods of their parameterization are
developed below independently. Stakhovsky [2000] suc-
cessfully applied the multifractal approach to the analysis
of the efficiency function but dealt with not a catalog but a
discrete time series of data summed over narrow time win-
dows without discriminating between the contributions of
ordinary and order grouping.

The order grouping of earthquakes was discovered
for the first time by Ogata and Abe [1991] in time-
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ordered sequences of magnitudes from world and Japa-
nese catalogs of earthquakes. These sequences were
processed with a constant step as time series (the num-
ber of an event in the sequence was meant as its occur-
rence time). Ogata and Abe discovered that the series
they obtained possess a self-similar structure. However,
they considered this result as secondary; it has not
drawn any attention and has not been further developed
in seismology. Order grouping in a sequence of volca-
nic eruptions was discovered in [Gusev et al., 2003].

In this work, the phenomenon of order grouping is
studied on the basis of the Abe and Harvard world cat-
alogs, using a physical value, the seismic moment M,
as the weight of an event. In the case of the Abe catalog,
covering the period 1900-1989, values of M, were
mostly estimated indirectly. The Harvard CMT catalog
(1977-2001) includes values of M,,.

To perform this task, one should have methods for
recognizing self-similar behavior of efficiency func-
tions and measuring their characteristics, which is the
subject of the introductory part of the paper. The corre-
lation dimension D, is used for studying this behavior
from a limited set of data. The dimension D, = D, is the
generalized fractal dimension D, at ¢ = 2 for a hypo-
thetical multifractal measure defining the time structure
of the efficiency function.

APPROACH TO THE ANALYSIS
OF SELF-SIMILAR GROUPING
IN A SEQUENCE OF EVENTS OF VARIOUS
INTENSITIES

Initial Data Model

Initially, we assume that an idealized catalog of
earthquakes can be considered as an object generated
by the following chain of operations.

(1) Realizations of two random multifractal mea-
sures X(z) and ¥(z) are specified in an interval (0, T) of
the time axis ¢. In general, these measures are statisti-
cally interdependent.

(2) A realization of the generalized Poisson process
of a density X(r) is generated in (0, 7). The realization
consists of N points {1; /=1, 2, ..., N} defining the time
moments (dates) of catalog events.

(3) The interval (0, 7) is divided into N small inter-
vals, each containing one point-event. For definiteness,
let a half-interval (¢, _ |, t;] contain the ith event.

(4) The measure Y(r) is integrated over each of the
smaller intervals, and the result is assigned to the corre-
sponding point-event as its weight.

In this scheme, here referred to as scheme A, X(7)
specifies the instantaneous density of the flow of events
and Y(t) gives the efficiency; in the case of earthquakes,
the latter is the generation rate of the seismic moment.
If X(2) = const, the event times form a Poisson process.
The measure ¥(¢) is integrated over small intervals, and
their distribution has a finite variance, whereas the dis-
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tribution of seismic moments is hyperbolic with an
exponent of about —0.65. We could not construct a sim-
ple model for ¥(z) with a hyperbolic distribution of
weights in both the general case and the case of the null
hypothesis of mutually independent weights of neigh-
boring points. Therefore, although this scheme is phys-
ically clear, its direct application to data analysis
encounters difficulties. However, it can be checked
indirectly, by examining its consequences.

In this connection, we considered an alternative
scheme of the data structure (scheme B). As before,
X(t) is a random multifractal density generating a set of
time moments {7; i = 1, 2, ... N}, while the weights of
each of the N events are defined as follows.

(1) A set " of N independent random values is spec-
ified in accordance with a power (Gutenberg—Richter)
law.

(2) The set is enumerated so as to generate a positive
correlation between the weights of neighboring points
(with numbers i and i + k); this correlation is described
by a function slowly decreasing with increasing k, e.g.,
a power function. (Technically, this rearrangement can
easily be made, for example, by creating a realization ®
of a correlated discrete Gaussian random process of N
readings in length, after which each of the N readings in
@ is replaced by the “corresponding” reading from I
Here, the correspondence means that the replaced (in
®) and replacing (from I') readings have identical num-
bers in their variational series, i.e., in permutations of
the sets @ and I' ordered by increasing weight. If a
hyperbolic function of correlation is chosen for @, the
generated process will be a nearly self-similar multi-
scale process. However, there is no reason to expect
multifractal behavior proper from such a process.)

Scheme B is largely artificial and therefore less
appealing but enables a direct analysis of data, as was
done in [Ogata and Abe, 1991]. Note that both schemes A
and B aim at estimating the exponent in the correlation
function (or spectrum). If the initial object is treated as
a multifractal, this exponent is the correlation dimen-
sion.

Direct Estimation of the Correlation Dimension

To reveal self-similar grouping in sequences of
events of various intensities, we used concurrently two
approaches, each determining the correlation dimen-
sion in the ideal case of a multifractal object. In the case
of such an object consisting of points (of unit weight),
the correlation dimension can be determined on the
basis of the first correlation integral [Bozhokin and
Parshin, 2001]:

C(d) = (1N,)N(d; < d), (1)
where N, is the number of pairs of points on the time
axisindexedas 1,2, ... i, ... J, ... n (sz n(n —1)/2),
d;;=1;—1; is the time interval between the components
of a pair with the numbers i and j, and N(d;; < d) is the
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number of pairs with values d;; < d. Formula (1) is stan-
dard but, if data from a limited time interval (of the
length T))) are treated, gives a biased estimate, which is
usual in estimating the correlation function. The perti-
nent correction is easily obtained in this case, and the
unbiased estimate has the form

N(d;j<d)

(Xd)leAI—dQTQ'

(2)
Estimates (1) and (2) can be derived directly from the
“observed efficiency function”; in the given case, the
latter has the form

p(1) = Y Vid(t-1), (3)

where V; is the mass of the ith point. We set temporarily
V; = 1 and denote this variant of the function p(r) by
pi(t). Note that the smoothing with a window of the
width T transforms p(z) into an empirical estimate of
efficiency with the resolution 7, whereas an instanta-
neous value of the efficiency cannot be determined.
Similarly, smoothing of p,(z) yields an empirical esti-
mate of the flow density of events. The ordinary esti-
mate of the second multivariate correlation moment of
the function p,(¢) has the form

B\(d) = [ p(0)pi(t +dya, )

and the integral J.i B,(x) dx is identical with N(d; < d).
This representation elucidates the meaning of generali-
zation (2) for the case of points with different masses V..
The accumulated number of pairs N(d < dj) is replaced
by the accumulated sum of weights of the pairs
W(d < d;j), so that the contribution of a pair of events
(i, ) to W(d < a"-j) is equal to the product of their masses
V.V,=w(d}). Then, the generalized analogue of formula (2),
i.e., the estimate of the correlation integral allowing for
masses, assumes its final form:

1 ]W(d,-ﬁd)
1 =d/2T)W(sce d;;)

Cdd)z(

Y, widy) (5)

_ ( 1 )d”-cd
~\1-d/2T
2 W(d;‘j)

Bee d;

If the behavior of the efficiency function is self-sim-
ilar (scale-invariant), C(d) and C,(d) must be power
functions. It 1s shown in [Bozhokin and Parshin, 2001]
that, in the 1-D case,

cld)y~d"™, 6)
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where D, is the correlation dimension. Let D, be the
value of D, characterizing C, (d). To estimate D, from
observations, we can take the logarithm of both parts in
(6) and apply the linear regression procedure to the
resulting linear relation

logC(d) = const+ D_logf. (6a)

In this case, it is convenient to represent C(d) not by all
readings but by a small number (7-20) of values corre-
sponding to a set of d values with a constant (or nearly
constant) step on a logarithmic scale. This is justified
because (1) weakly correlating points are selected and
(2) different scales have the same weight, although the
points are unequally spaced. Below, we adhere to this
technique and use a step of the order 1/2-1/3 of the
octave (0.1-0.15 of a common logarithm unit).

Estimation of the Correlation Dimension
with the Use of the Power Spectrum

An alternative method of correlation dimension
determination uses the Fourier transform of B(d), which
is the estimate of the power spectrum of the efficiency
function p(z) [Pisarenko and Pisarenko, 1991]. If p(r)
has a self-similar structure, this spectrum B(f) must
also be a power function; in this case, we have
[Bozhokin and Parshin, 2001]

’ D,-1
B(f)~f" . (7)
In using (7) for the estimation of D, from observations,
it is appropriate to integrate the power spectrum (by
analogy with (4)); this eliminates the problem of invalid
pointwise estimates of the spectrum [Pisarenko and

Pisarenko, 1991]. In what follows, we proceed from the
relation

,
U(f) = [BOMAf~ 1. (®)
0

Then, data are treated in a way quite similar to the case
of C(d) (formulas (6) and (6a)):

logU(f) =const+ D, log f. (8a)

Note that, if the Poisson process is not self-similar
(D.=1), C(d) ~ d, B(d) and |B(f)| are white noises, and
U(f) ~f. 1If D. < 1, (6) is the spectrum of flicker noise.
To simplify the notation, the estimates of D, and D,
from the spectrum are denoted below as D, and D,,.

Real data often have a more complicated structure
compared to the representations described above.
Below, particularly important is the case when a ten-
dency toward periodicity of events is superimposed on
the mainly self-similar grouping. Because of the defini-
tion of the functions C(d) and U(f) through integrals,
the presence of one or several outliers in the spectrum
and/or the autocorrelation curve should distort the
hypothetical power structure of these functions. In the
Vol. 41
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simplest case of a single characteristic period 7%, one
may expect that this will not lead to overly large distor-
tions in the estimates of D, from U(f) at frequencies
lower than 1/T* and from C(d) at delays d no longer
than (0.5-0.8)T*.

Significance Test of the Self-Similar
Grouping and the Estimation
Accuracy of the Parameter D,

At first glance, this problem should not be difficult
because the estimation of the parameter D, using (6)
and (8) is linear regression and the grouping signifi-
cance test consists in checking whether the confidence
interval of a given estimate of D, includes the value
D.= 1. Actually, the situation is more complex. We dis-
cuss this problem in the specific case of formula (6a).
As noted above, in order to construct the regression
line, a set of arguments d, is specified and the values
C(d,) = C, are selected under the condition that the val-
ues C, are correlated and nonequally spaced. Moreover,
since actual volumes of data are limited, the pairs
(Cy, d,) have distortions due to the effect of a small sam-
ple, complicating the estimation, particularly with D,
close to unity. Under these conditions, reliable esti-
mates of significance are difficult to obtain.

Therefore, we chose the Monte Carlo method for the
significance test. We analyzed the observed catalog and
a series of its randomized analogues (“synthetic data™)
and compared the results; below, these randomized
analogues, devoid of the time structure, are referred to
as “pseudocatalogs.” Information on the time structure
includes the set of event times r and an ordered
sequence of their values M. Observations can differ
from nonstructural synthetic data in both of these
aspects. First, the observed times can be non-Poisso-
nian and have a tendency toward the formation of
groups and clusters, which is called ordinary grouping.
Second, the observed sequence of values M, can differ
from a random permutation of such values, forming
groups of large events, and such behavior is called
order grouping. Therefore, two randomizations should
be made for each pseudocatalog. The first randomiza-
tion, by time (indicated below by the index “RT”),
destroys the ordinary grouping: the observed set of
times f; is replaced by a model set of times correspond-
ing to a randomization of a Poisson sequence of the
same length T}, whereas the set of mass values remains
the same. The second randomization, by order (indi-
cated below by the index “RO”), destroys the order
grouping: values of masses of n events are randomly
reshuffled, and the times of these n events remain the
same. In constructing each pseudocatalog, both ran-
domizations should be performed (in an arbitrary
order) for testing the simplest hypothesis “D,,, < 1.”
Applying this scheme, we discuss estimation of D,
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alone (analysis of estimates for D, as well as for D,
and D,, is the same).

We created sufficient numbers of pseudocatalogs

(N = 500-5000), calculated N estimates D,,, = B™™

and constructed their empirical distribution function.
This function can be reduced to the case of the null
hypothesis “true D,,, is zero” and can then be directly
applied to the determination of the significance level for

bs ’ 3
a concrete value D,, = D' obtained from observa-

oW

tions. If the estimate D™ < D™ is obtained in Ny

cases from N, pseudocatalogs, the direct estimate of
the significance level is Q = Ny/Nyc. At small values of
Q, the relative accuracy (variation coefficient) of the Q
determination by the Monte Carlo method is close to

00y c= Nbo's . The value of Ny, is chosen large enough

to attain an acceptable accuracy of the Monte Carlo O
determination (usually no worse than 10%). To guaran-
tee the result, we always used the modified value of the

significance level Q04 = Ouc(l — Nbo's ), close to the

upper 84% confidence level for Q. At the final step, the
inferred estimate of the significance level was rounded
upward.

In the case of the null hypothesis, the empirical esti-

. 2 h
mate of the variance o (D™ from pseudocatalogs

yields an acceptable (albeit somewhat elevated) esti-
mate of the error in the values D' . Finally, it is use-

ow

th .
ful to have the average value D™ from the estimates

ocw

synth . i g i
D™ which must be equal to unity in the ideal case.

However, at n < 1000 and even more so at n = 25-100,
systematic distortions arise due to a small size of the
sample. Heavy weights in the tail of the distribution of
M, also have a certain effect. In a first approximation,
the influence of these distortions on the estimates
derived from observations can be compensated by

. . s th + .
using the deviation of fo:ff” ' from unity as a correction

to the direct estimate DL':.’S’ from the observed catalog.

Below, the following corrected values are used as
observed parameters:

DY = D& 4+ (1-DE™). 9)

In what follows, we do not consider results from indi-
vidual pseudocatalogs and, for simplicity of notation,

synth)
Dfﬁ,’j"‘ means the average over pseudocatalogs.

The Role of the Two Types of Grouping

To gain the simplest idea of the factors responsible
for the observed behavior of the efficiency function, it
is desirable to examine separately the contributions of
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both types of grouping. One of the approaches to this
problem is based on scheme A described above and
consists in the comparison between the estimates of the
efficiency function D, obtained from observations and
a partially randomized catalog. Thus, in order to verify
the significance of the ordinary grouping, one can apply
the randomization RT alone and then perform the same
procedures as in the preceding section. Namely, the

5 b *
estimate Dfﬁ,s) from observations should be compared

with the estimate D(L.?,'?K% obtained as the average over

estimates derived from the set of pseudocatalogs ran-
domized in accordance with scheme RT alone. The sig-

. . e (0b th) 5 -
nificance level for the hypothesis “D%y" < Diirry ™ is

oW

estimated from this set as the relative amount of such
estimates that are smaller than D' .

In addition to the significance level, it is useful to
estimate the contribution of the ordinary grouping to
the overall result D, by the relation

(synth) (obs)
Dcw(RT) =1 _(DCW(RT}_DCW )- (10)
As is easily seen, this estimate is qualitatively accept-
able. In the absence of ordinary grouping, we have

1 u b‘. - -
DRy = DS (on average, the RT randomization,

changing times but preserving the order, does not
change anything) and Dzt = 1, which means that the
contribution of the ordinary grouping to the self-similar
behavior of the efficiency function is absent. In the

absence of the order grouping, we have D'>(g, = 1 (the

RT randomization destroys completely the time and,

thereby, any structure) and D, gy = Dﬂ’s’, which
means that the contribution of the ordinary grouping to
the self-similar behavior of the efficiency function is
predominant. Finally, it is convenient that the test of the
clear hypothesis “D,, gt < 17 is strictly equivalent to

- e (03 synth)
the test of the more sophisticated “D'%" < DY,

discussed in the preceding paragraph. In a quite analog-
ical way, using the RO randomization alone, the signif-
icance of the presence of order grouping is assessed and
the parameter D, estimating its individual contri-

. h i
bution to D™, is constructed.

cw

Another approach to discrimination between the
contributions of the ordinary and order groupings relies
on the data representation using scheme B. In this case,
following Ogata and Abe, time intervals between events
are artificially set equal to each other in order to verify
the presence of order grouping and D,,, is estimated on
this modified scale for both a real catalog and a
pseudocatalog. Such estimation is performed through
the replacement of real or model dates by a sequence of
dates with a constant time step, retaining the same total
duration 7). The modified time (the argument of the
thus-constructed time series) is denoted by #*, and the
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corresponding frequency, by f*. In this approach, the
estimates D,,, and D, denoted below as D, and D,,,,
assume a new, unconventional meaning and, what is
more important, become independent of the actual set
of exact dates of events. As a result, this yields a “pure”
measure of the extent of order grouping. Estimating
D,,,, from the spectrum, we used the discrete Fourier
transformation applied to a set of n points. The contri-
bution of ordinary grouping is determined in this
approach traditionally, from the estimates D, and D,
obtained with unit weights of points (events). We
should emphasize that the estimates D, and D, are

independent and the same is true of D, and D,.

Thus, five estimates of the self-similar behavior can
be examined for each catalog: the total estimate D,
reflecting the self-similar behavior of the efficiency
function on the whole; the estimates D, g0, and D,,,,
reflecting the order grouping alone; and the estimates
D,.,xt) and D,, reflecting ordinary grouping alone. Of
course, estimates within each of these two pairs are not
independent, but their joint analysis can be helpful. In
addition, we have five analogical spectral estimates:
D.\'n-“ D.\'IV(RO)" D.vwla Dsw(RT)’ and Ds“

To illustrate the notion of order grouping, Fig. 1 pre-
sents several artificial sequences differing in grouping
properties. The plots (a)—(c) in this figure show variants
of the same sequence with artificially created order
grouping: large events are neighbors. In order to attain
a graphically clear correlation of neighboring values,
we used a smooth function for the generation of
weights and did not intend to construct a self-similar
sequence. Thus, the parameters D,,,;, D,,,;, and D, were
invoked here only to illustrate their capabilities of rec-
ognizing various types of grouping, without relation to
the property of self-similarity. Plots (a)—(c) differ in
time structure: (a) a constant time step, (b) a Poisson
sequence, and (c¢) a sequence with ordinary grouping
(dense clusters are clearly seen in this sequence). In all
of the three cases, the parameter D, (its accuracy is
about +0.5) is significantly lower than unity, which
indicates the presence of order grouping. The similar
plots (d)—(f) in Fig. 1 involve the same set of times and
the same set of event weights, but these weights are ran-
domly permuted here. Now, the property of “neighbor-
hood of large events” becomes invalid and D, is close
to unity. The parameter D, (its accuracy is about +0.02) in
plots (c) and (f) is significantly smaller than unity, as is
characteristic of the ordinary grouping; on the contrary,
no clusters are present (D, = 1) in plots (a), (b), (d), and
(e). (The apparent temporal variations in the density of
events visible in Figs. 1b and le are statistically insig-
nificant, as is evident from the value D_= 1.) The values
of the parameter D,, (its accuracy is about +0.07)
clearly reflect the absence or presence of any type of
grouping and are smallest in the case (c¢), when both
types are equally present.
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Fig. 1. Artificial examples of short (N = 100) sequences of points differing in weight and grouping properties: (a) order grouping
for weights with a constant (unity) step in 1; (b) order grouping for weights with a Poisson sequence of times ; (¢) order grouping
for weights with ordinary grouping in r: (d—f) the same as in (a—c) but with the order grouping being destroyed by permutations of
numbers of points. Italicized are values of parameters statistically indistinguishable from unity.

INITIAL DATA

We used two world catalogs of earthquakes: the Abe
catalog [Abe, 1981, 1984; Abe and Noguchi, 1983a,
1983b], containing only shallow earthquakes and cov-
ering the period 1900-1989, and the Harvard catalog,
covering the period 1977-2001. The initial version of
the Abe catalog was compiled after [Pacheco and
Sykes, 1992]. It is important to note that Pacheco and
Sykes, following [Perez and Scholz, 1984], “corrected”
values of M, from the Abe catalog, proceeding from the
disputable a priori idea that the yearly number of earth-
quakes having magnitudes above a certain threshold
must be stable. In the opinion of the authors of these
two papers, variations in the yearly number of events in
the Abe catalog are fictitious, reflecting systematic
errors that varied in a supposedly consistent manner at
the majority of the world seismic stations. Figure 2 plots
the cumulative number of M, > 7.2 events for the original
version of the Abe catalog (a) and after the introduction
of corrections from [Pacheco and Sykes, 1992] (c¢). Itis
seen that, decreasing M, values by 0.1 in 1900-1915
and by 0.2 in 1915-1948, these corrections did smooth
the behavior of the yearly number of events at the level
M, = 7.2-7.5 and decreased drops in the density of
events in 1949-1966 and particularly in 1970-1989, as
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well as a less pronounced drop in 1900-1915. However,
if the magnitude threshold is elevated to M, = 7.9-8.0,
it is seen from Figs. 2b and 2d that the same drops per-
sist even after the introduction of corrections from
[Pacheco and Sykes, 1992]. This implies that the varia-
tions in the flow density of events are by no means an
artifact. For this reason, the corrections from [Pacheco
and Sykes, 1992] were discarded in the construction of
the working catalog. The lower threshold of magni-
tudes was set at M, = 7.2.

The Abe catalog gives values of the magnitude M,,
whereas a catalog presenting values of the seismic
moment M, is preferable for our purposes. For the bulk
of events, the values M, were calculated from M, by the
correlation formula [Ekstrom and Dziewonski, 1988]

logM,, [dyn cm] = 1.5 M, + 16.14. (11)

In the case of events with M, > 8.2, for which this
approach is incorrect, we used the work [Fujita, 2001],
where published values of the seismic moment M, are
summarized for many strong events. In some cases,
estimates of M, were taken from [Pacheco and Sykes,
1992]. The Kanamori formula M,, = (2/3)logM,— 10.7
was utilized for the determination of the moment mag-
nitude.
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Fig. 2. Time behavior of the cumulative number of earthquakes from the Abe catalog in the initial variant (a, b) and with corrections
after [Pacheco and Sykes, 1992] (c, d). The lower threshold of the magnitude M, and the number of events n are (a) 7.2 (n = 535),

(b) 8.0 (50), (c) 7.2 (402), and (d) 7.9 (47). The corrections flatten the plot at the level M, = 7.2-7.5, but the main features of non-
stationarity (higher densities in 1915-1924 and 1932-1969) remain unchanged at the level M = 7.9~ 8.0.
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Fig. 3. The aftershock elimination effect on the correlation integral curve for the Abe catalog with (a) and without (b, ¢) elimination
of aftershocks at C = 0.6 (b) and Cg = 1.2 (c). Henceforward, D, was estimated from discrete points of the empirical dependence

log C (logd ) chosen at a step of 0.15 on the logd scale. The larger squares are points included in regression. The thick line is the
direct regression, and the broken line with a slope of unity is given for reference. The smaller symbols, plotting the correlation inte-
gral for the first 25 synthetic sequences, show the internal scatter in the variants of the empirical curves logC,, (logd ) and clearly

illustrate deviations of the observed curve from variants of synthetic data.

The resulting catalog contained n = 536 events.
Swarms and aftershocks were then eliminated from this
catalog (the algorithm is described in Appendix). Fig-
ure 3 plots the dependence logC (logd ) for the origi-
nal and the processed catalogs, the latter in two ver-
sions, of moderate (Cy = 0.5) and stringent (C = 1.2)
elimination of aftershocks. In each case, dependence (6a)
constructed for the range d = 0.5-90 yr yields an esti-
mate of the slope D, close to 0.98. It is clear that, with
such a choice of the range, the influence of aftershocks
is relatively small. On the other hand, estimates of D,
for the range d = 0.003-0.1 yr vary significantly.

The estimate D, = 0.67 was obtained for the range
d= 0.003-0.1 yr without elimination of aftershocks.

IZVESTIYA, PHYSICS OF THE SOLID EARTH

However, this peculiar value has no clear sense because
the plot logC (logd) has a significant curvature. The
branches for small and large delays join smoothly in the
interval 0.1-0.5 yr. Figure 3a clearly demonstrates the
presence of two qualitatively different phenomena of
the “aftershock” and “long-term” grouping. We should
emphasize that, although the value of D, is close to
unity in the range d = 0.5-90 yr, it is smaller than unity
at a high significance level.

In the catalog version with eliminated aftershocks,
the D, estimates for the range d = 0.003-0.1 yr are
closer to or even greater than (at Cz = 1.2) unity. The
difference in the estimates is clearly related to the
extent of elimination of aftershocks. Generally speak-
2005
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ing, the elimination of aftershocks is by no means a rig-
orous procedure and the choice of the elimination
extent regulates the relationship between elimination
errors of two types: (1) “missing a real aftershock™ and
(2) “‘erroneous elimination of a non-aftershock”
[Gusev, 1971]. For the purposes of this work, it is
important that residual aftershocks result in an overes-
timated extent of grouping, whereas the elimination of
a certain number of non-aftershocks underestimates the
grouping extent and, in the worst case, will give a neg-
ative result. It is obvious that, under these conditions, a
redundant elimination of aftershocks is preferable to
their insufficient elimination. The formal estimate D, > 1
for the range d = 0.003-0.1 at C, = 1.2 implies that the
aftershock elimination with Cp = 1.2 is stringent
enough: no grouping is present in the catalog and after-
shocks are redundantly suppressed. Below, we used
solely catalogs with aftershocks eliminated at Cp = 1.2.
To decrease distortions, the lower boundary of the
working range of delays may be set at 0.25 yr because,
judging from Fig. 1c, the self-similarity hypothesis (the
D, independence of scale) seems reasonable within the
range 0.25-90 yr. However, further analysis showed
that the lower boundary d should be still higher.

The calibration of events of the Abe catalog being
somewhat reliable, we invoked data from the Harvard
catalog. The small overlapping time interval of the Har-
vard and Abe catalogs was considered insignificant. We
selected the M,, > 6 events of 1977-2001. The initial
catalog contained 3001 events, but their number was
reduced to 2572 after the elimination of aftershocks
with Cyp = 1.2. The number of residual aftershocks is
much smaller than in the Abe catalog, and the slope of
the curve logC(logd) is appreciably greater than
unity, which can indicate an effect of the Geiger counter
dead time type. This fact suggests that some events are
missing in the Harvard catalog due to “blindness” of the
Harvard system of data processing within a time inter-
val up to half a day long after a strong earthquake. Since
the Harvard catalog is regarded as a “true” catalog by
many seismologists, this problem is significant for
gaining deeper insights into the actual reliability of its
data used in various types of analysis. We tested our
suggestion by analyzing data over the period from Jan-
uary through June 1996. The ISC bulletin of 2001 con-
tains 52 events with M (ISC) = 6.0. The Harvard catalog
does not give M (HRVD) values for 17 (33%) of these
events. Of course, this is an overestimated result
because some of the M (ISC) values are unreliable.
Rejecting 13 events for which a small number of sta-
tions (1-5) are involved in the M (ISC) estimation, we
find that 4 (10%) of the remaining 3 events do not have
values of M, (HRVD). This is a rather appreciable frac-
tion. Two of these four events are not aftershocks. Thus,
one should expect that estimates from the Harvard cat-
alog can be slightly biased toward higher values of D,
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thereby underestimating the significance of grouping
effects.

ANALYSIS OF THE ABE CATALOG

The structure of the time behavior in the case of the
Abe catalog is well recognizable in plots constructed
for an abridged catalog (Fig. 4). Direct inspection of the
plots reveals the presence of ordinary and order group-
ings. Figure 5a presents the plot logC,, (logd ) for the

complete catalog. The plot is seen to be sharply nonlin-
ear, is S-shaped, and has a few benches and plateaus.
Taking into account the log-log scale, the most pro-
nounced bench is observed in the interval d = 2-5 yr.
The probable origin of this anomaly becomes clear
from Fig. 4: the largest release of the seismic moment
is associated with the activation of 1950-1965, and
events inside this interval have a tendency toward peri-
odicity with the periods observed. Another interesting
feature of the plots is drops about 2-5 yr long in world
seismicity after groups of or single earthquakes in
1906, 1923, 1952, and 1960. Both factors are responsi-
ble for the formation of “random” benches and plateaus
in the empirical plot logC,, (logd ). Reliable analysis
of the correlation dimension using formula (6a) is
impeded by the presence of these well-expressed
benches. However, for illustrative purposes, we
obtained an estimate of about 0.6 for the slope of the
linear segment of the plot in the interval d = 4-90 yr.
This value cannot be used as an estimate of the correla-
tion dimension D,,, for the reasons discussed above.
Moreover, the plot includes other nearly linear seg-
ments with slopes of more than unity. Thus, correct
estimation of D,,, from the plot logC,, (logd ) is impos-
sible.

On the contrary, the spectral interval plotted in
Fig. 5b for periods longer than 4 yr (in the frequency
range f = 0.011-0.25 yr') is basically suitable for the
estimation of the dimension by formula (8a), particu-
larly taking into account that the plot is nearly linear
here. The working range cannot be broadened toward
higher frequencies because a kink is present near a
period of 3—4 yr in the plot of the integral of the spec-
trum log U (log f ) (probably, this feature is evidence of
the same anomaly as in the plot C,(d)). Table 1 presents
results of detailed analysis in the range f = 0.01-
0.25 yr!. First of all, we should note that the estimate
of D, is 0.80, and the inequality D,,, < 1 is significant
at the level Q = 2.5%. This indicates that the original
idea of multiscale grouping is generally valid for the
seismic moment efficiency function.

It is important to clarify whether the deviation of
Dy, from unity is related to the order grouping or it can
be well accounted for by the ordinary long-term group-
ing. Above, the parameters D, o) and D, were pro-
posed for this purpose. The estimate of D e, 1s 0.82
and its deviation from unity is significant at a level of 5%.
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Fig. 4. Sequence of the strongest earthquakes from the Abe catalog as a function of time (a, b) and order number (c. d) for the lower

thresholds M,, = 7.8 (a, ¢) and M,, = 8.21 (b, d). For clarity, the events are specified by the value M (1)!2 . Note the clusters of 1905-

1906, 1918-1925, 1950-1952, 1957-1960, and 1963-1965, as well as the supercluster of 1950-1965. Also noticeable are the seis-
micity drops of 1907-1910, 19541956, and 1961-1962. Plots (a) and (b) clearly show the ordinary grouping (close groups sepa-
rated by gaps). Plots (¢) and (d) clearly show the order grouping (the strongest events gravitate toward each other and are “poorly

mixed” with weaker events).

The parameter D,,, was estimated in the spectral win-
dow f = 0.011-0.7 yr', inside which the spectrum is
nearly linear. (On the d* scale, the aforementioned
abrupt bench of the plot C,,(d) is preserved but shifts to
the point d* = 1.3 yr, so that the choice of upper bound
f* =0.7 yr! is quite acceptable.) Since a rather con-

vincing significance level was attained in this case, we
briefly illustrate our calculations. Direct estimation of

the slope from 12 spectral points in the interval 0.011-
0.7 yr! yielded D' = 0.865. The D,,,, average over

mw

1000 pseudocatalogs is D™ = 1.010 + 0.056. This

Table 1. Estimates of grouping parameters obtained by various variants of the analysis of the Abe catalog

M,, threshold D, to Dgyro) O D, 0o Dyrmyt 0 D,to
(n) 0 0 Q
7.2 0.81 £0.10 0.82 +0.11 0.86 + 0.06 0.90 £ 0.02 =03+04
(482) 2.5% 5% 0.25% <0.1% 1%
7.8 0.79 £ 0.09 0.82+0.11 0.85 £ 0.05 0.91 £ 0.05 =0.2+0.5
(105) 0.5% 5% 0.25% 5% 1%
8.21 0.80 £ 0.09 0.80 + 0.09 0.80 + 0.08 0.95+0.05 0.77+0.5
(29) 1% 0.5% 0.1% 15% >20%
7.8 0.73+0.3 0.89+0.3 0.66 + 0.24 1.06 £ 0.08 =0.2x0.5
(104%) 20% >20% 5% - 1%
Notes: Boldfaced are values with a significance level of 5% or less.
* Catalog with the eliminated strongest event of 1960.
IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 41  No. 10 2005
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Fig. 5. The correlation integrals C, (d) (a) and C,(d*) (c) and the integrals of the power spectra U(f) (b) and U(f*) (d) from data of
the Abe catalog: (a, b) at M,, > 7.2 (n = 482); (c, d) at M,, > 8.21 (n = 29). The estimates of D, and Dy, for plots (a) and (b) are
obtained with delays (d) and periods (1/f) longer than 4 yr, and the estimates of D,,; and Dy, for plots (c) and (d) are obtained
with delays (d*) and periods (1/f*) longer than 1.3 yr. The slope of the plot log C,, (logd ) in case (a) in the interval d = 0.01-1 yr
is noticeably higher than unity, implying the absence of fractal behavior in this interval; therefore, only the estimate of Dy, from
spectrum (b) (n = 482) should be regarded as correct. The estimate of D, from spectrum (d) (n = 29) is also correct, whereas the
reliability of the estimate of D, from (c) is limited. The notation is the same as in Fig. 2.

yields D'?, = 0.855. The rounded interval estimate is
D., = 0.86 + 0.06. Furthermore, 20 of 10000

swl
pseudocatalog values of D™ are smaller than 0.865,
which yields the initial estimate Q = 20/10000 =
0.0020. With regard for the statistical indeterminacy,
we have Q,,,q = 0.0020 x (1 +207°3) = 0.00247. Round-
ing off upward, we obtain a final estimate of the signif-
icance level for the inequality D,,,; < 1: O = 0.25%.

Incidentally, we obtained estimates for the ordinary
grouping that are given in the table. An unexpectedly
small value of D is noteworthy. It reflects a real ten-
dency but has low accuracy because the corresponding
spectral segment is appreciably nonlinear. (This does
not contradict the estimate D, = 0.98 from Fig. 1: the
theory does not guarantee the coincidence of dimension
estimates in time and frequency domains in cases devi-
ating from pure, frequency-unbounded self-similarity.)
Overall, we may state that both types of grouping con-

IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 41

tribute to the deviation of D, from unity. Comparison
of the estimates Dy, r0) = 0.82 and D, gty = 0.90 with
the main estimate D, = 0.80 suggests that the contribu-
tion of the order grouping is more significant.

Similar analysis was applied to truncated variants of
the aftershock-free Abe catalog that included events
with M,,> 7.8 (105 events) and with M,, > 8.21 (29). In
the first variant, numerical estimates of D,,, D,, and the
significance level remained virtually the same. How-
ever, much smaller estimates of these parameters were
obtained for the catalog of 29 events. This is opposite to
the usual behavior, when the significance decreases
with” decreasing amount of data, and implies that the
order grouping is best expressed in sets consisting of a
small number of the strongest events.

For illustration, Fig. 5 plots estimates of D,, and
D,,,, obtained for this case. The data are seen to be well
consistent with power-law dependences, suggesting
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Fig. 6. Sequence of the strongest earthquakes of 1977-2000 as a function of time (a) and order number (b) with the lower threshold

M,, = 7.35. Values of M:‘{Q (M in units of 10%7 dyn cm) are plotted on the ordinate axes. Plot (a) displays moderately expressed
ordinary grouping (concentration intervals on the time axis). Plot (b) displays order grouping (strong events gravitate toward each

other).

that the idea of multiscale grouping is fairly plausible
and additionally supporting the reliability of the D,
estimate. The picture in the time domain is even more
impressive: the estimated value of D, is 0.37 £ 0.25
and the plot logC,, (logd* ) is nearly linear. However,
noticeable deviations from linearity at small d* make
the numerical results somewhat less reliable. (Note that
the interval of anomalous behavior at d = 0.01-1 yr vis-
ible in Fig. la is virtually absent in the variant of the
truncated catalog.) Thus, at a qualitative level, esti-
mates obtained in the time domain support the infer-
ences derived from the spectral analysis. To illustrate
the general stability of the results, we removed the
strongest event of 1960 from the list of 105 events with
M,, > 7.8. Processing of the catalog of the remaining
104 events (Table 1) yielded qualitatively the same
results as in the former case; in particular, the signifi-
cance level for the parameter D, amounts to 5%.

ANALYSIS OF THE HARVARD CATALOG

Figure 6 presents the time variation plot for the
100 strongest events from the Harvard catalog. Both
ordinary and order groupings are noticeable at a quali-
tative level, although they are not so evident as in the
case of the Abe catalog. Figure 7 presents the plots

logC,, (logd ) and logU (log f) for the complete cata-
log (2573 events with M,, = 6.0) and the plots
logC,, (logd* ) and logU (log f* ) for 100 events with
M, =7.35. Grouping patterns are clearly seen in the
plots logU (log f ) and poorly recognizable in the plots

logC,, (logd ). The dependence logU (log f ) exhibits

a kink in the interval f= 2-3 yr! (Fig. 7b). In order to
obtain correct estimates, all parameters of the slope
were determined for delays d, d* and periods 1/f, 1/f*
longer than 0.5 yr. Numerical estimates of the dimen-
sion are given in Table 2; estimates of D, and D,,, are
also presented in the table for catalogs containing 2573,
406, 100, and 29 events (with different M,, thresholds).
Self-similar variations in the efficiency function are
observable in both parameters D, and D, but best
resolved in D,,. The D,,, values are significantly smaller
than unity only for truncated catalogs. The order group-
ing is unobservable for the catalog of 28 events but, for
other catalogs, it is clearly observed in the parameter
Dy, roy and is somewhat less distinct in the parameters
Doy and Dy,,. The situation with the parameters of
ordinary grouping is not so clear but, even in this case,
the data point to a noticeable grouping, at least for the
strongest earthquakes. As noted above, values of the
parameter D, can be somewhat distorted (overesti-
mated), so that its behavior is not unexpected. Overall,
the Harvard catalog data qualitatively confirm the con-
clusions derived from the Abe catalog. However, both
types of grouping are expressed to an appreciably
smaller degree.

DISCUSSION

Our analysis showed that both self-similar behavior
of the efficiency function and order grouping are clearly
expressed in both studied catalogs on large time scales.
Ordinary grouping is also present, but this is not sur-
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Fig. 7. The correlation integrals C,,(d) (a) and C, (d*) (¢) and the integrals of the power spectra U(f) (b) and U(f*) (d) from data of
the Harvard catalog: (a. b) at M, > 6.0 (n = 2573); (c, d) at M, > 7.35 (n = 100).

prising. The behavior of the Abe catalog exhibits better
resolved patterns. We may state that the period 1980-
1995, which is distinguished by a seismic moment
release rate that is very low for the 20th century, is also
anomalous with respect to grouping tendencies.

It is noteworthy that numerical estimates of the cor-
relation dimensions of the types D, and D, appreciably
diverge. Thus, all estimates of the type D, for the Har-
vard catalog are much closer to unity than estimates of
the type D,, whereas an inverse situation is observed for
the Abe catalog (Fig. 5). Apparently, the main factor
responsible for these divergences is a significant devia-
tion of real data from an ideal self-similar pattern. This
issue requires a more detailed examination in the
future. As yet, it is clear that more reliable results are
obtained by the spectral approach, in which all short-
term effects of the aftershock or quiescence types are
suppressed automatically.

IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 41

G.M. Molchan (personal communication) noted
that, if data are generated by scheme B, the following
multiplicative relation should be valid:

Dcszcwch‘ (12)

Inspection of Tables 1 and 2 shows that our results
agree, in general, with this relation (with regard for
wide intervals used for estimation). In some cases, it is
satisfied with good accuracy; thus, according to Table 2
for N=100, D,,,=0.52 and D,,,,D,=0.74 X 0.76 = 0.56.
The same is true of the estimates presented in Fig. lc,
although the self-similarity of the artificial data is
doubtful.

The discovery of well-expressed ordinary grouping
in the Abe catalog is consistent with results reported in
[Ogata and Abe, 1991; Kagan and Jackson, 1991]. We
did not detect the presence of ordinary grouping in the
Harvard catalog for M,, = 6.0. On the whole, this agrees
with the results derived by Kagan and Jackson [1991]
from the Harvard catalog for the period 1984—1988
with the suppressed effect of aftershocks: for the bulk
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Table 2. Estimates of grouping parameters obtained by various variants of the analysis of the Harvard catalog

parameter | Mo Iill;f)shold DW;%W +0 DCWID”&(RO) +0 Dcwlf%w, +0 JDC,,,f.f_)_né,mrJ +c Dcf% +c
D, 6.0 0.985+0.02 | 0.98+0.16 0.99 +0.02 1.00£0.007 | 1.00+0.001
(2572) 20% 10% >20% = -
b, 6.0 0.58+£0.28 | 0.48+0.25 0.49+0.4 0.98 + 0.03 1.0240.2
(2572) 5% 5% 5% >20% =
D, 6.8 097+0.024 | 097+0.020 | 098+0.021 | 0.99+0.02 1.01 +0.05
(406) 20% 10% 20% >20% .
D,, 6.8 0.53£0.27 | 0.57+027 0.64+0.3 0.81+0.10 0.74+0.27
(406) 2.5% 2.5% 10% 2.5% 20%
D,. 7.35 0.95+0.04 | 0.94+0.03 0.98 +0.02 0.97 +0.03 1.01 £0.02
(100) 10% 5% 20% 20% =
B 7.35 0.52+£027 | 0.62+0.25 0.74 %03 0.64+020 | 0.76+026
(100) 2.5% 2.5% 25% 2.5% 20%
D, 7.75 0.82+£0.08 | 0.99+0.07 1.0540.04 | 081+0.07 | 0.83+0.06
(28) 2.5% >20% - 0.5% 1%
Dy, 7.75 0.60£0.26 | 0.96+0.10 1.95+0.4 0.51£027 | 0.56+0.27
(28) 5% >20% = 2.5% 5%

Note: Boldfaced are values with a significance level of 5% or less, and italics mean the absence of grouping.

of pairs of events, they obtained D, = 1.00 for epicentral
distances of more than 3276 km and D, = 0.95 for the
interval 819-3276 km, whereas our estimate is D, =
1.00 for all epicentral distances. However, with higher
magnitude thresholds, our estimates from the parame-
ter Dy, gy definitely suggest that the ordinary grouping
is actually present. The discovery of the order grouping
in the Abe catalog agrees with the results of Ogata and
Abe [1991]. It is worth mentioning here the following
peculiar fact: for small delays (0.1-30 days) in a cata-
log with noneliminated aftershocks, we obtained a ten-
tative estimate of D. = 0.67 for both the Abe catalog

(see Fig. 3a) and the Harvard catalog (not shown).

An important methodological aspect of this work is
the demonstration of the fact that long-term variations
in seismicity are well observed in the spectral represen-
tation. Ogata and Abe applied this approach to the flow
density and the sequence of magnitudes, but the spec-
tral properties of long-term variations in the efficiency
function are studied here for the first time. We remind
the reader that a process characterized by a power spec-
trum of the type 1/f* where the exponent ¢ lies in the
range 0.5-1.5 (or in a slightly wider range), is described
as flicker noise. Since o. = 1 — D, the values of D, and
D, presented in Tables 1 and 2 imply that, given n =
100400, p,(t) and p(r) are pulsed flicker noises with
the following spectral parameters: (1) o= 0.75 for p()
and o. = 0.2 for p(t) from the Abe catalog and (2) o. =
0.25 for p,(z) and o= 0.45 for p(t) from the Harvard cat-
alog. The dependences of the seismic moment on the
number of the event determined from the same catalogs

IZVESTIYA, PHYSICS OF THE SOLID EARTH

have the form of flicker noises with o = 0.15-0.3 and
o= 0.15-0.5, respectively.

We should make the following comment on the
meaning of the estimates D, and D,,. One might
think that scheme 2, using the number of an event as an
argument of the type “fictitious time,” is a purely artifi-
cial procedure. However, following the arguments of
Mandelbrot [1982] concerning the “devil’s staircase,”
the “inner clock™ of the seismotectonic process runs
and measures a “modified time” only when a seismo-
tectonic deformation occurs, i.e., during an earthquake;
the rest of the time, this clock is stopped. In this context,
the presence of the self-similar order grouping means
that the seismotectonic deformation process possesses
fractal properties on a modified time scale. On the other
hand, the presence of the self-similar ordinary grouping
means that the modified time itself flows “in a fractal
manner,” i.e., only at the time moments of the ordinary
time that form a fractal point set (fractal dust).

CONCLUSIONS

(1) Methods for the recognition and analysis of
the self-similar order grouping in catalogs of events
of various weights, the self-similar behavior of the
efficiency function, and the contributions of the ordi-
nary and order grouping to this behavior are devel-
oped. A spectral approach to these problems is
shown to be effective.

(2) Anomalies in the time structure are discovered
for the Abe catalog at delays of up to 4 yr and for the
Vol. 4]
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Harvard catalog at delays of up to half a year. The
anomalies are of the types of periodicity and “dead
time” (quiescence) and contradict the idea of self-simi-
lar behavior. Due to the presence of such anomalies,
analysis of self-similar behavior is effective only in a
limited range of large time scales (low frequencies).

(3) The properties of the self-similar order grouping
of earthquakes, a phenomenon previously discovered
by Ogata and Abe, are studied in detail and are signifi-
cantly refined. This grouping is identified in two world
catalogs with eliminated aftershocks in the magnitude
interval M,, = 7-9.5 in a limited range of large time
scales.

(4) Self-similar variations in the global generation
rate of the seismic moment, or the efficiency function,
are discovered in the same ranges of magnitudes and
time scales with eliminated aftershocks. The efficiency
function behaves as flicker noise with a power spectrum
of the type 1/f025-045,

(5) Under the same limitations, the earthquake
flow density with eliminated aftershocks behaves as
pulsed flicker noise with a power spectrum of the
type IU'U}—D_K‘

(6) Under the same limitations, the seismic moment
as a function of the earthquake number in a catalog
behaves as pulsed flicker noise with a power spectrum
of the type 1/f%15-03,
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APPENDIX
Algorithm for Joining Swarms in a Catalog

We have to solve the problem of eliminating groups
of events close in space and time through the replace-
ment of such a group by a “joint event.” For this pur-
pose, repeated attempts are made to discover close pairs
(“neighbors”) and to combine each pair into an (joint)
event. The problem is considered as solved when close
pairs are absent. The joining procedure preserves the
total seismic moment. A pair is considered as close if its
events are separated by a distance no greater than (or of
the same order as) the typical size of a source and by a
time interval d of the same order as the duration of an
aftershock swarm.

The outer loop of the algorithm repeatedly pro-
cesses the current state of a catalog by an inner loop
procedure until no pairs remain to be joined.

(i) The inner loop consists in testing a current (in
time) event of the catalog (a “basic” event with a num-
ber i and a time 1;). All potential neighbors postdating
the basic event are then considered in the time window
[£f= Icnd]-
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(ii) The further procedure consist in testing whether
a current potential neighbor with a number j > i is an
actual neighbor, i.e., whether it meets the conditions
ry<drand t;, - t; = d; < dt, where r; is the distance
between the epicenters of the events and dr = dr(M,, M)
and dt = dt(M;, M)) are thresholds for r and d. The M
dependences of dr and dt are dr = Cp max(L(M,), L(Mj))
and dt = C(dr/L(8))"3, where L(M) = 10%3M-1.8 km,
Cg = 0.5-1.5 (adjustable), and C; = 0.25 yr. Further, if
the events / and j are neighbors, the joining procedure
is applied: the value M = M, of the joint event is deter-
mined through the sum of M|, values of the components
{ and j; an event greater in magnitude is determined and,
if, for example, M; is greater than M;, the record number
and the time of the event / are assigned to the joint
event, the “summed” magnitude is introduced into the
record of the latter, and the record of the event j is
deleted, after which procedure (ii) is repeated. Other-
wise, the record number and the time of the event j are
assigned to the joint event, the “summed” magnitude is
introduced into the record of the latter, and the record
of the event i is deleted, after which procedure (i) is
repeated.
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