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In 1967 Aki [1] showed that body wave displace�
ments from an earthquake source have high�frequency
spectral asymptotics of the ω–2 kind. It was found [2] that
this assumption allows one to simulate successfully
ground accelerations in the epicentral zone. The mecha�
nism that generates commonly observed spectra of the
ω–2 kind remains a puzzle, solution of which is interest�
ing and important for applications. In the present com�
munication, a numerical kinematic source model is con�
structed that generates spectra of the ω–2 kind.

(1) Calculations are carried out on the basis of the
theory of fault asperity after Das and Kostrov [3, 4]. In
[3] they considered an infinite fault with zero friction
with an asperity, i.e., a welded patch of limited�size,
loaded with shear. During the failure of the asperity,
the rupture front passes across its area. This propagat�
ing front generates surface waves that run along sur�
faces of the fault, and also body waves P and S. It is
believed that stress on the fault is released instantly

after arrival of the rupture front. Velocity  in
the SH wave in the far�field receiver at a point x =
{x, y, z} can be written as
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where  is displacement, ξ = {ξ1, ξ2, 0} is a
point of the source, with its hypocenter at ξ = 0, R =

|x|; ; c = cS is S�wave velocity; Σ is the source

asperity patch, with the characteristic size 
and an element dS; τ(ξ) is the stress drop on dS; δ(·) is
the delta�function; tfr(ξ) is the arrival time of the rup�
ture front at ξ; and the A factor combines constant
coefficients, geometric spreading, and the radiation
pattern of SH waves for the unit force. It is supposed
that τ(ξ) > 0; thus, (1) is a unipolar pulse. Qualitatively,

 is step function (~H(t)), smoothed by a win�

dow with duration , where  is the mean rup�

ture front velocity; . The amplitude of this step is

, (2)

where F0 is “the seismic force of a source.” For the
average amplitude of the signal (1), one obtains

. (3)

Similar formulas exist for P and SV waves. On this
basis in [5, 6], the earthquake source description was
proposed as a set of strong small spots or asperities; a
similar model is put forward in [7]. Here the viewpoint
is different: the entire earthquake source is considered
as one big asperity.

The model in [3] has been further developed [4] for
a fault with a frictionless region of finite size 2Rr. In
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this case Rayleigh waves do not run to infinity, but die
away on the boundary of this region, being converted
into body waves. As a result, an additional term for the
signal (1) arises which is followed by the delay of

~Tr = . As t → ∞, this term accurately com�

pensates for the displacement step . Conse�
quently the displacement signal obtains the habitual
shape of a unipolar pulse:

(4)

where G(·) is a signal from an elementary radiator,
appearing as an unipolar pulse of duration ~(1–2)Tr,
with an instant leading edge and stretched trailing edge,

. (5)

Here Λ(·) is a window function with the integral equal
to unity and duration ~Tr. It is assumed that G(·) is the
same for all, and taken as [7]:
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with its amplitude  and duration ~Tc has its

integral close to . As usual, it is
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related to the seismic moment M0 of the source. This
parameter is close to , in agreement with [4].

In [4] the case is considered when Rayleigh waves
propagate outside from an asperity ( ). The
opposite case  is considered below. For cor�
rectness of such an approach, Rayleigh waves should
be able to propagate (i.e., fault walls should be not
welded) up to a certain distance Rr from the radiator
dS located at the current point ξ of the rupture. When
the rupture front runs through the vicinity of the point ξ,
the mentioned condition indeed takes place, however
only for a limited time Tr of sliding (“rise time”); and
Rr ≈ cSTr. Observations suggest that .

It is assumed in [8] that τ(ξ1, ξ2) is a self�similar sto�
chastic function with a Fourier spectrum shape close

to  (fractal) with β ≈ 1; this hypothesis has been sup�

ported by inversions of real sources, and it is accepted
in the following. In simulations, the distribution law
for τ(ξ1, ξ2) is assumed to be lognormal. The scale of
dispersion of values of τ(ξ1, ξ2) is fixed by setting the

coefficient of variation CV
τ
 = .

It is usually assumed that the running rupture front
is a smooth line. However, the geometrical complexity
of fronts is a necessary condition for formation of
commonly observed incoherence of high�frequency
radiation. Following [9] it is assumed that the rupture
front has fractal geometry (is “lacy”) and fills a strip of
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Fig. 1. (a) A cartoon depicting an earthquake source on an area Σ of the size 2Rc. H—the hypocenter, RF—rupture front, HF—
healing front. Ck is a patch on the fault of the size 2Rr (the dotted contour) where the propagation of Rayleigh waves radiated from
dS is confined (a particular patch of this kind is associated with each particular dS). The rupture front and healing front are not
strictly defined entities; they are understood as boundaries of the strip where the actual fractal front is localized. (b) An example of
fields tfr(ξ1, ξ2) and τ(ξ1, ξ2) on a specimen of the simulated source. Wiggling isolines depict the positions of the fractal front each
1.42 s. Shades of gray code time: the later, the lighter. A particular example position of the front is emphasized by a bold line. Below
an isotropic random field τ(ξ1, ξ2) with spectrum ~1/k is depicted; shades of gray reflect amplitude; maxima are darker.
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width 2Rr. To achieve this, the moment of failure
tfr(ξ1, ξ2) was set as

tfr(ξ1, ξ2) = R(ξ1, ξ2) + S(ξ1, ξ2). (7)

Here R(ξ1, ξ2) is a random function that provides a
fragmented structure and wiggling shape of the front;
R(ξ1, ξ2) is simulated as a self�similar function, with

spectrum ~  and with uniform distribution law in the

interval [0, 2Tr]. The term S(ξ1, ξ2) provides regular
behavior of the rupture at small k. It is accepted that

S(ξ1, ξ2) = , where vr is a preset constant; ξh is

the hypocenter (which provides the vertex of the cone
t = S(ξ1, ξ2)).

(2) The procedure of numerical calculation
includes the following (numerical values accepted in
example calculations are given in parentheses):

—the choice of the size of the rectangular source
(38 × 19 km), time step dt (0.025 s), distance step
dx (0.075 km); setting vr (3.0 km/s); cS (3.5 km/s);
setting ξh;

—setting parameters β (1.0), CH (0.03), CV
τ
 (0.6),

δ (1.3);

—generation of random fields tfr (ξ1, ξ2) and τ (ξ1, ξ2);

—calculating  according to (1) for a
ray along the normal to the fault (the analysis is con�
fined by this case); 

—calculating  based on (2);
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—determination of the normalized displacement
spectrum  calculated from u(t)) through the Fou�
rier transform, smoothed at high frequencies, and nor�
malized by division by М0; and also of the associated
acceleration spectrum .

(3) Looking at Fig. 2a, one can perceive that signals
, and  agree qualitatively with observations

of real earthquake records. In Fig. 2b one can see that
the smoothed acceleration spectrum is flat at high fre�
quency, and that the second corner�frequency fc2 is
present, a feature often noticed in the observed spec�
tra. In general, a theoretically grounded and intrinsi�
cally consistent technique is created for simplified
kinematic simulation of seismic waves radiated by an
earthquake source in a broad frequency band.
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Fig. 2. Examples of simulation. (a) Signals , , u(t), and  at the receiver. (b) Spectra  (solid) and  (dashes),

initial and smoothed. The thick line is the geometrical average of  over 25 random tries. Gray lines are idealized spectra for

the ω–2 model. The main corner frequency fc is set as , where  is the second normalized central power moment for .
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