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Abstract—Since its formulation in 1967–1970, the classical

x-2 model of earthquake source spectrum awaits a consistent

theoretical foundation. To obtain one, stochastic elements are

incorporated both into the final structure of the fault and into the

mode of rupture propagation. The main components of the pro-

posed ‘‘doubly stochastic’’ model are: (1) the Andrews’s concept,

that local stress drop over a fault is a random self-similar field; (2)

the concept of rupture with running slip pulse, after Heaton; (3) the

hypothesis that a rupture front is a tortuous, multiply connected

(‘‘lacy’’) fractal polyline that occupies a strip of finite width close

to the slip-pulse width; and (4) the assumption that the propagation

distance of fault-guided, mostly Rayleigh waves from a failing spot

on a fault is determined by the slip-pulse width. Waveforms pro-

duced by this model are determined based on the fault asperity

failure model after Das and Kostrov. Properties of the model are

studied by numerical experiments. At high frequency, simulated

source spectra behave as x-2, and acceleration spectra are flat.

Their level, at a given seismic moment and rms stress drop, is

inversely related to the relative width of the slip pulse. When this

width is relatively low, a well-defined second corner frequency

(lower cutoff of acceleration spectrum) is seen. The model shows

clear dependence of propagation-related directivity on frequency.

Between the first and the second corner frequency, amplitude

spectra are strongly enhanced for the forward direction; whereas,

above the second corner frequency, directivity is significantly

reduced. Still, it is not inhibited totally, suggesting incomplete

incoherence of the simulated radiator at high frequencies.

Key words: Self-similar, random, stress drop field, fractal,

acceleration, slip pulse, random rupture front, frequency-dependent

directivity.

1. List of denotations and abbreviations

The following three earthquake source models will

be discussed: Case F1: asperity-source on an infinite

planar fault P with zero cohesion (DAS and KOSTROV

1983, henceforth referred to as DK83); Case F2: fault-

source P of finite area that contains single smaller-size

asperity and whose cohesion equals zero over the rest

of its surface (DAS and KOSTROV 1986; henceforth

referred to as DK86); and Case F3: finite fault-source

P whose entire area is a composition of spots/asperities

of finite or infinitesimally small area (DAS and KOSTROV

1988, henceforth referred to as DK88; BOATWRIGHT

1988, henceforth referred to as B88; GUSEV 1988,

henceforth referred to as G88; GUSEV 1989). The

superscript ‘‘?’’ is used for Case F1 where appropriate.

x = {x, y, z} Cartesian coordinates of the

receiver point; selected so that

z = 0 on a planar fault P

n ¼ fn1; n2; 0g Cartesian coordinates of a

radiating point on P

Ra Asperity area in Cases F1 and

F2; located on P

2Ra Its characteristic size (e.g.

diameter)

R Entire source area in Cases F2

and F3, located on P

2Rc Its characteristic size. For Case

F2, Rc � Ra. It is assumed that

fault length L & 2Rc

dS Infinitesimally small element of

Ra or of R
DS Small element of R in Case F3,

of size DS0.5. A generalization

of a single asperity treated in

Cases F1 and F2, of size 2Ra
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Rs Characteristic propagation dis-

tance of inhomogeneous

waves (Rayleigh and other)

guided by the free fault surface.

These waves are generated by

asperity failure in Cases F1 and

F2, and by each DS in Case F3.

Called ‘‘slip radius’’ in B88. In

Case F2, Rs = Rc. At distances

close to Rs, inhomogeneous

fault-guided waves die off and

do not propagate farther

cS S-wave velocity

v Mean velocity of rupture front;

it is assumed to be close to cS

Ta & 2Ra/cS

& 2Ra/v

Characteristic duration of

rupture propagation over in

Cases F1 and F2

Tc & (1 - 2)Rc/cS

& (1 - 2)Rc/v

Characteristic duration of

rupture process in Cases F2

and F3

Ts & Rs/cS Characteristic time associated

with Rs

sðnÞ Local dynamic stress drop on

dS; it is assumed that sðnÞ[ 0

In time, this stress drop is

assumed to occur abruptly: its

time history sðn; tÞ � sðnÞHðtÞ
where H(t) is the Heaviside step

Tr Rise time, defined as twice the

centroid of slip rate time

history at n. It is assumed that

Ts & Tr

L Width of running slip pulse

l = vTr

CH Haskell–Heaton constant; CH =

l/L. In the case when Tr and

l vary over a fault, CH is

understood as the average

value over fault area

w Characteristic width of the

‘‘thick’’ lacy random rupture

front or ‘‘front strip’’. It is

assumed here to coincide with l

Tw Temporal width of the ‘‘front

strip’’; Tw = w/v

R Hypocenter-to-receiver dis-

tance, it is assumed that R »

Ra and R » Rc

F0 ¼
R

Ra
sðnÞdS Seismic force of an asperity

source; introduced in DK83 for

Case F1; still meaningful for

Case F2. Valid for the Case F3

when the area of integration is

replaced by R
fc1 Common (leftmost) corner

frequency, crossover point

where theoretical or empirical

source spectrum trend turns

from f 0 to f -2, f -1 or,

generally f c. A model-

independent definition of fc1 is

used here based on log-spectrum

expansion into MacLaurin series

(SILVER 1983); fc1 is defined as

1/2pTrms, where Trms
2 is the

second normalized central

power moment for a

displacement waveform

fc2 Second from the left corner

frequency, crossover point

where source spectrum trend

turns from (accurately or

approximately) f -1 to f -2;

simultaneously: left cutoff of

approximately flat source

acceleration spectrum. May

coincide with fc1; this case is

one of the ‘‘x-2’’ spectral model

fucoh Frequency of transition between

ranges of high and low directivity;

these cases are understood as

the manifestations of, respec-

tively, effectively coherent and

effectively incoherent space–time

organization of the radiating fault;

the denotation means ‘‘upper

bound of coherent behavior’’.

Introduced in (GUSEV 2013a).

Is close to 1/T0 as defined

by BERNARD and HERRERO

(1994)
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fc1,90, fc2,90 The values of fc1 and fc2 for the

ray normal to the fault

tfrðnÞ Is the time of arrival of rupture

front to n; it is simulated

numerically as the sum of

three terms: deterministic

low-wavenumber term QdetðnÞ
that describes systematic

propagation of the front,

random high-wavenumber

term QrndðnÞ that describes

fine details of the front

geometry, and random low-

wavenumber term QlkðnÞ that

perturbs QdetðnÞ, of secondary

importance

CCM Composite-crack source model:

a source consists of a number of

isolated slip patches or cracks

abutting one another; proposed

by BOATWRIGHT (1982) and

PAPAGEORGIOU and AKI (1983)

SPM Slip-pulse source model;

proposed and substantiated by

HEATON (1990) who developed

the concept of HASKELL (1964)

2. Introduction

The first stochastic model of an earthquake fault is

one proposed by HASKELL (1966), who modified his

running dislocation model (HASKELL, 1964) by intro-

ducing a random local dislocation (slip) rate. This

space–time function was specified through its corre-

lation functions: in time (1D) and in space (2D). AKI

(1967) modified Haskell’s correlation function to

make displacement spectra of radiated body waves to

behave as x-2 at high frequencies (HF), instead of

the less realistic x-3 of HASKELL’S (1966) model.

BRUNE (1970) reduced this concept to a simpler,

deterministic, one. The best-known part of his theory

treats the simple one-corner x-2 spectral model, with

a single corner frequency denoted here as fc1. He also

noted, however, that a more realistic spectral model

of the general x-2 kind may need an intermediate

x-1 branch. This behavior of ‘‘x0–x-1–x-2’’ needs

two corner frequencies: fc1, and fc2 [ fc1. BRUNE

(1970) associated the emergence of the second corner

with the fractional stress drop over a fault. GUSEV

(1983) noted that spectral shapes with the second

characteristic frequency clearly above fc1 are ubiq-

uitous for moderate-to-large magnitudes; in essence,

he provided empirical support for the idea of a two-

corner spectrum. Since then, this guess was reliably

confirmed further by analyses of many studied data

sets; see GUSEV (2013a) for a fresh review on fc2.

HANKS and MCGUIRE (1981) found that the flat

acceleration spectrum of BRUNE’S (1970) x-2 model

fits well the smoothed observed spectra of strong

motion. In essence, they treated the deterministic

spectra of BRUNE (1970) as rms spectra of a certain,

implicitly introduced, stochastic model, and with

great success. ANDREWS (1980) proposed to treat the

final slip over a fault as a random self-affine function,

whose 2D Fourier spectrum is asymptotically of the

1/ka type. He also has shown that the field of local

stress drop has a spectrum of a similar (1/kb) kind.

ANDREWS (1980) also suggested that real faults are not

only self-affine, but self-similar; in this case, a = 2

and b = 1. Inverted slip distributions over real faults

generally support this idea (TSAI 1997, SOMERVILLE

et al. 1999) despite certain deviations. BERNARD and

HERRERO (1994; see also HERRERO and BERNARD 1994)

noticed that the instant dislocation jump that propa-

gates over Andrews’ fault with a = 2 generates

random signal with x2 spectrum. In general, the idea

to explain x2 spectra through spatial spectra of fault

heterogeneity looks attractive.

Two-corner spectra represent a characteristic

property of multiple-subsource, composite-crack

source models (CCM) (PAPAGEORGIOU and AKI 1983).

Both in general, and in CCM in particular, the lower

corner fc1 is close to inverse rupture duration,

whereas the second, upper corner fc2 of CCM is

related to the duration of a subsource. Although the

assumption of ubiquitous isolated subsources of

CCM raises doubts from a tectonophysical viewpoint

(GUSEV 1983, 2013a), CCM constitutes a rather suc-

cessful scheme for practical numerical modeling

of HF radiation (BERESNEV and ATKINSON 2002;

HALLDORSSON and PAPAGEORGIOU 2005). Thus, any

competing source model should operate not worse
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than CCM. In CCM, local stress drop (i.e. average

over a subsource) is many times above the average/

global stress drop over an entire composite fault.

Taking local stress drop as a reference value, the

CCM can be classified as one with fractional stress

drop as introduced by BRUNE (1970).

Another concept of rupture evolution that also

features fractional stress drop, is the slip-pulse model

(SPM) (HEATON 1990), which inherited important

features of HASKELL (1964, 1966). Different from

CCM, this model does not assume any unbreakable

barriers: slip pulse sweeps the entire fault. Such a

behavior is much more plausible tectonophysically.

Each of the two models—CCM and SPM—contains a

dimensionless parameter of scale ratio, namely, for

SPM, the running strip width l to source length

L ratio, l/L, in the 0.025–0.15 range (HEATON 1990),

and, for CCM, the subsource/composite source size

ratio of comparable magnitude. In both cases, such a

ratio gives a rough estimate of the ratio of mean

global stress drop to local stress drop, thus describing

numerically the fractional character of stress drop.

The value of l is proportional to rise time Tr of

dislocation.

Let us consider HF fault radiation, i.e. radiation in

the frequency range well above fc1. Its important

property is low directivity. Weak HF directivity is a

well-expressed feature, clearly manifest as the typical

lack of expressed asymmetry for isoseismal maps

(and for peak acceleration maps) around a finite

surface-focus earthquake source of moderate-to-large

magnitude, even for clearly unilateral ruptures; see

examples in GUSEV (2013a). This feature is seen best

for the two highest isoseismals. There are other

causes for asymmetric isoseismals: radiation pattern

of a point source, non-uniform attenuation, as well as

uneven site effects. All these make various imprints

on isoseismal pattern, but none among them might be

capable of suppressing a specific pattern expected for

deterministic unilateral ruptures, with an expressed

unilateral lobe, specific for the discussed kind of

directivity (see e.g. BOATWRIGHT 1982). As for fre-

quency-dependent directivity of HF amplitudes, see

TSAI (1997), SOMERVILLE (1997) for deeper analysis.

For deterministic fault rupture models, both of a

dislocation or of crack kind, one can expect expressed

directivity; thus, the property that needs theoretical

explanation is, rather, significant diminution of

directivity at HF. The probable cause of low

HF directivity is the incoherence of HF radiation

(KOSTROV 1975; BOATWRIGHT 1982; GUSEV 1983).

From the observational viewpoint, incoherence is

suggested by a noise-like appearance of HF records,

and conceptually it can be associated with random

phases of waveforms contributed by elemental spots

of a fault. Randomness of phases is a key factor that

underpins the application of rms amplitudes (and,

essentially, energy spectra) in strong motion analyses

at HF, e.g. in HANKS and MCGUIRE (1981). For lower

frequencies (typically below 0.5–1 Hz), however,

directivity becomes quite noticeable; near the source

it shows itself particularly clearly as the emergence of

‘‘forward-directivity pulses’’ (SOMERVILLE 1997). For

smaller magnitudes, directivity is clearly manifest at

high frequencies (BOATWRIGHT 2007) if one defines

‘‘high frequency’’ in absolute terms, as this is com-

monly done; but for smaller events, this part of the

spectrum seems to be associated with coherent radi-

ation, and thus shows clear directivity. Thus, the

presence of directivity at low magnitude seems to be

an apparent problem that calls for a physically con-

sistent, non-dimensional definition of ‘‘high

frequency’’. See more on this point in (GUSEV 2013a).

BERNARD and HERRERO (1994) associated the transi-

tion point from higher low-frequency directivity to

diminished HF directivity with characteristic fre-

quency 1/T0 associated with rise time: T0 & Tr. This

guess is generally confirmed below.

As a different cause of diminution of directivity

effects (as well as radiation pattern ones), one may

imagine wave scattering, usually expressed just at

HF. Simulation suggests, however (GUSEV and

ABYBAKIROV 1996), that significant randomization of

radiation pattern and/or directivity by scattering may

be expected only at the ‘‘diffusion mode’’ scattering.

This mode appears at lapse times on the order of 39

(transport mean free path TMFP)/(wave speed cS)

or later. At values TMFP = 50–100 km and

cS = 3.5 km/s, typical for regional distances, this

means delays like 150–300/3.5 = 40–90 s. This is

much above typical direct wave travel time for

waveforms that produce strong motion/isoseismal

data. At more relevant travel times like 10–30 s,

scattering is mostly of the ‘‘forward’’ kind (preferably
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at small angle relative to the ray direction). Direc-

tivity is only slightly suppressed in this case (whereas

nodal-plane holes in the radiation pattern may be

significantly smoothed over).

The three listed features—x-2 HF spectral

asymptote, two-corner spectral shape of, roughly, the

x0–x-1–x-2 kind, and expressed frequency depen-

dence of directivity—all lack systematic theoretical

explanation. Textbooks (e.g. SHEARER 1999), illustrate

spectral features by source time function (STF) that is

a convolution of two boxcars, whose widths are

defined by (1) rupture propagation duration, and (2)

rise time of local slip. In general terms, the imprint of

these two characteristic times on spectral shapes in the

form of two corresponding corner frequencies is a

quite reasonable idea, and it is completely supported

by the present study. However, in the time domain,

convolution of the two boxcars creates the determin-

istic displacement STF of trapezoidal shape, and,

therefore, unrealistic far-field accelerogram that con-

sists of exactly four delta-functions and nothing else.

An attempt to iron out this problem by smoothing of

any of the two unrealistically sharp boxcar shapes

immediately leads to significantly faster spectral

decay as compared to the x-2 kind. Thus, such a

description of STF is oversimplified. More realistic

model of STF is needed, such that might preserve two-

corner spectra with x-2 overall behavior, and,

simultaneously, show realistic, white-noise style,

acceleration waveform. Note that CCMs generate

two-corner spectra, but the rise time concept is alien to

these models. As for low HF directivity, although its

connection with the incoherency property of a HF

source has been suggested in general terms, there is no

model that would reproduce this property in a con-

ceptually consistent way. The CCM does show

incoherency (formed by randomly perturbed timing of

subsources) but these ‘‘subsources’’ seem to be an

artificial construct. At any rate, an appropriate model

that might explain the mentioned properties must

probably be of a stochastic kind. To propose a model

of this type is the key intention of the present paper.

Fault description developed here is based on local

stress drop, and differs from the common approach

based on local slip rate. The general idea to represent

radiated earthquake waves as a sum of contributions

of fault spots characterized by their stress drops was

introduced in parallel, but from non-identical view-

points in DK88, in B88 (‘‘composite asperity model’’)

and in G88. (The last paper is in Russian; the paper in

English, GUSEV (1989), covers similar points and is

easier to access; only the earlier paper will be referred

to in the following). DK88 and G88 considered only

strong spots (small asperities) dotted over back-

ground of negligible strength; whereas B88

considered all fault spots. In DK88, a number of

multiple-asperity example faults are accurately sim-

ulated deterministically, whereas both G88 and B88

analyzed a multitude of asperities in less detail and in

a stochastic manner. In particular, they assumed

pulses from asperities to add incoherently at high

frequency. G88 also discussed the structure of the

rupture front and treated it as a ‘‘wave of breaking of

asperities’’, i.e. a loosely organized feature, resulting

in randomly phased contribution of asperity-gener-

ated pulses at a receiver. The present work elaborates

on these concepts.

The main idea here is to combine two separate

stochastic models. One of them is purely spatial and

describes the fields of final slip and of local stress drop

over a fault as random functions, following ANDREWS

(1980). Another model describes fault evolution in

space–time: this evolution is represented by a propa-

gating rupture front whose instant geometry is a

wiggling, multiply connected (‘‘lacy’’) random poly-

line of fractal type (GUSEV 2013a), instead of a

commonly assumed smooth curve. This random

polyline is thought to be ‘‘thick’’: at any time instant,

it occupies a strip with loosely defined margins, but of

finite width w. This polylinear geometrical object will

be called ‘‘front strip.’’ The combination of these two

models will be called ‘‘doubly stochastic source

model’’. Other significant components of the present

approach are: the notion of running slip-pulse rupture

(HEATON 1990), whose width l is thought to be close to

w; and application of the fault asperity failure model

of DK83 and DK86 that permits one to relate forma-

tion of the complete earthquake wavetrain to fault

failure and to propagation of fault-guided (mostly

Rayleigh) waves over the non-locked part of a fault.

The last critical assumption made here following B88

and G88 is that an arbitrary failing spot on a fault can

be treated as an asperity that generates fault-guided

waves that travel a certain distance along the non-
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locked part of the fault. However, in contrast to B88

and G88, this value is thought here to be close to l and

w. (The fault-guided waves discussed here are strictly

confined within the slipping part of the source-fault,

and should not be confused with regular guided waves

that may propagate in a fault-related low-velocity

waveguide.)

The set of described assumptions was imple-

mented as a simulation code based on a simplified

kinematic description of rupture evolution. The

properties of the doubly stochastic source model are

studied through numerical experiments. In these, all

the three above-mentioned empirical properties of

fault-generated radiation are manifest. The results

may provide a solution for an old puzzle, and are also

important for applications.

A preliminary, highly compressed version of a

part of the results presented here was recently pub-

lished in GUSEV (2013b).

3. General Background

As an elastodynamical basis of the present

approach, the fault asperity concept after Das and

Kostrov is employed. They analyzed, in DK83,

radiation generated by failure of a strong patch—an

asperity—on an infinite fault which is weak, i.e. with

negligible cohesion (Case F1). They considered this

analysis as a first step in understanding seismic waves

radiated by real faults with their widely varying

strength. In the next step in DK86, they modified

their results for the case of a similar single asperity on

a finite weak fault (Case F2). Lastly, in DK88 they

analyzed a weak fault with multiple asperities. To

understand better their way of treatment of fault

radiation one should realize that it is somewhat

unusual. Generally, there are two equivalent ways to

represent the source of elastic radiation field of a

fault: via double-couple density—the common one,

and via stress change/drop. Despite similarity of

appearance of corresponding integrals, there are sig-

nificant differences. In the double-couple description,

no fault dislocation exists: a fault with dislocations

is represented by double-couples inserted into

homogeneous medium whose cut is welded. This

representation, in addition to its many positive points,

has some inconveniences. One cannot determine

dislocations and their rates while stepping in time

(because of point-to-point interaction). On the con-

trary, the use of stress change permits direct

integration in time along the rupture front, and thus

presents some advantage. But only in the case of

infinite fault is it a relatively easy procedure. In this

case, there are two contacting halfspaces, and in each

halfspace, the asperity failure is equivalent to the

switching on of a force spread over the asperity area.

The forces in the two halfspaces are equal and of

opposite sign. Body wave displacement time history

from such a failure represents a smoothed step at any

distance, including far field. The case of finite fault

was analyzed numerically in DK86 and DK88; of

course, no static step for the far field appears in these

cases (although numerical integration in DK88 can-

not show this with full clarity). Use of stress-change

description of finite fault evolution is the key point of

the present paper. However, the presentation below

begins with the introductory Case F1 of infinite fault.

A remarkable feature of the DK86 model (F2) is

the emergence of two balanced forces applied to the

opposite walls of the finite weak fault, i.e. of the cut

in the elastic space. Just these forces generate initial

parts of body waveforms that are essentially static far

field displacements. These displacements persist until

fault-guided, mostly Rayleigh, waves reach the

boundary of the fault and in their diffraction, create

backward static displacement that precisely com-

pensates the first one; consequently, the summary

static offset equals zero. Fault-guided waves are a

strictly transient phenomenon; it accompanies for-

mation of the free surface of the cut that arises

temporarily during rupture evolution.

The approach of DK83 and DK86 was developed

in DK88, and, on a less strict level, in B88 and G88,

who tried to apply it to observable entities. Analysis in

B88 is concentrated on spectral description of the

radiator. It is noted in B88 that one can treat the fault

radiation as a combination of contributions of fault

spots/asperities covering the entire fault surface.

Therefore, the usage of the term ‘‘asperity’’ in B88 is

somewhat loose and a large fraction of these ‘‘asper-

ities’’ could only be relatively weak. For the present

paper, it is important to note that the analysis of B88 is

applicable for any decomposition of the entire fault
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into ‘‘asperities’’, in particular into the great number

of small ones.

In G88, both spectral and time-domain features are

analyzed. It is supposed that significant contribution

into strong motion comes from strongest fault patches,

and the role of the remaining part of fault area (taken

as 90–95 %) can be neglected. Rupture evolution was

thought to be a ‘‘wave’’ of the switching on of

asperities, with some average tendency that creates a

loosely defined front, but with random timing of

precise moments of failure of individual asperities.

This assumption permits one to explain incoherence

of HF radiation in the time domain, introduced earlier

in (GUSEV 1983) on an abstract level. The model

presented here elaborates on this scheme.

In the frequency domain, both in G88 and in B88,

the incoherent (‘‘energy’’) summation of spectra

generated by individual asperities was assumed,

resulting in a spectral model with two characteristic

corner frequencies and an interval of x-1 trend

between them. From an observational viewpoint, this

spectral pattern explained the emergence of two

characteristic frequencies of an empirical source

spectrum of GUSEV (1983) (whose f2 is essentially fc2

of the present paper); it was also supported by the

limited analysis of observational data in G88.

Recently, GUSEV (2013a) reviewed many empirical

studies of strong motion Fourier acceleration spectra

and source acceleration spectra. The vast majority of

these data indicate that fc2 exists at least in the form

of low-frequency cutoff of acceleration spectrum.

This cutoff practically never matches fc1 that is close

to inverse rupture duration; very often fc1 \\ fc2.

These facts reliably indicate the reality of the inter-

mediate spectral branch with its slope between 0 and

2; however, this slope may deviate from the accurate

value 1.0 (cf. BOATWRIGHT and CHOY 1989).

Both in B88 and G88, the distance Rs over which

fault-guided waves propagate was discussed. In B88,

this point was treated in more detail, and the special

notion of ‘‘slip radius’’ was introduced for Rs. In

terms of an estimate, both in B88 and G88 it is

assumed that Rs is close to fault radius Rc. Therefore,

as seen retrospectively from the spectral patterns

constructed below, they could not construct even

qualitatively realistic theoretical spectra. To correct

this deficiency of the early work is one of the main

aims of the present paper. It will be shown that the

value of Rs has a prominent effect on spectral shapes.

And specifically when it approaches the fault radius,

two-corner spectra and the intermediate x-1 spectral

slope tend to disappear. For spectral shapes to be

realistically two-cornered, one needs Rs much below

Rc. Slip-pulse width l is an evident candidate to

provide an appropriate distance parameter, and

equating 2Rs to l is the main idea of the present paper.

Note that this assumption is physically plausible: slip

pulse is just the place where fault walls are not

engaged; in this way, slippage becomes possible, and

fault-guided waves are able to propagate.

It should be added for clarity that there are two

processes that are deeply interwoven in Case F3: (1)

development of dislocation/slip within the slip-pulse

strip (that follows from its definition as slip pulse) is

associated with the static component of the fault-

guided wavetrain; and (2) formation of radiated body

waves is caused by the wave component of the same

wavetrain, when it dies off. Thus, the two phenomena,

slip and radiation, are two aspects of the same process.

4. Fault Asperity Theory (Cases F1 and F2)

as the Basis of the Present Model

In DK83 (Case F1), an infinite fault is considered

formed by frictionless contact of two elastic half-

spaces. There is a limited welded patch or ‘‘asperity’’

loaded with shear, and it fails. In the process of

failure, the rupture front propagates over the asperity

surface; at the moment of arrival of this front to an

element of the asperity, local stress drops to its

residual value on this element, and stress drop arises.

The rupture front generates body waves P and S in

each halfspace, and also a fault-guided (Rayleigh,

inhomogeneous S and static) wavetrain that propa-

gates along surfaces of the fault. For the SH wave, the

displacement and velocity at a far-field receiver, at a

point x = {x, y, z} and time t can be written as

uSH;1ðx;tÞ¼A

Z

Ra

sðnÞHðt�ðR�n �cÞ=cS� tfrðnÞÞdS;

A¼ <SH
F

4pq c2
SR

ð1aÞ
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_uSH;1ðx; tÞ¼A

Z

Ra

sðnÞdðt�ðR�n �cÞ=cS� tfrðnÞÞdS

ð1bÞ

where Ra is the asperity patch, located on a planar

fault with its element dS; the hypocenter is at n = 0;

R = |x|; c = x/R; q is density; <SH
F is the radiation

pattern of SH waves radiated by a point force; H(�) is

the unit step and d(�) is a delta-function. Similar

formulas exist for P and SV waves, with the SV case

technically more sophisticated. Note that no waves

are generated by parts of the fault outside Ra (fault-

guided waves generate no far-field body waves). To

be accurate, the model permits non-zero, finite fric-

tion outside Ra; the crucial property is not the level of

cohesion but the lack of displacement-jump-related

weakening (sliding friction must be equal to static

friction). Therefore, the stress drop equals zero over

these parts; henceforth they will be referred to

somewhat loosely as ‘‘low-cohesion’’ parts. In this

case, qualitatively, the waveform defined by (1a) is a

step H(�), convolved with a smoothing window with

its width close to Ta. Correspondingly, (1b) is a one-

sided, say, positive, pulse with similar duration. See

sketch on Fig. 1a, d for illustration. The area of the

pulse (1a) equals the final step-like static displace-

ment whose value, as can be derived from (1a), is

uSH;1ðx;1Þ ¼
Z

Ra

_uSH;1ðx; tÞdt ¼ A

Z

Ra

sðnÞdS

� AF0 ð2Þ

For the average amplitude of positive velocity

signal of duration &Ta, based on (1, 2), one can

derive an estimate

_uSH;1ðx; tÞ � AF0=Ta ð3Þ

The sðnÞ function that enters the above discussion

is

sðnÞ ¼ rdynðn; tÞjt¼t�failure � rfðnÞ ð4Þ

where rfðnÞ is residual friction and rdynðn; tÞ is the

time-dependent stress level, taken at the moment of

failure; thus, it can be equated to yield stress ry(n). It

is often assumed (e.g. B88; OGLESBY and DAY 2002)

that pre-earthquake initial stress r0ðnÞ is closely

correlated with ryðnÞ, and local values of r0ðnÞ,

being below ryðnÞ everywhere but at the rupture

nucleation point, are still comparable to ryðnÞ. To

justify such an assumption, it may be noted that at

points n where r0ðnÞ is only infinitesimally below

ryðnÞ, rupture propagation velocity would be near to

or above its critical value (cS or cR). Conversely, in

the case of a barrier, where r0ðnÞ is significantly

below ryðnÞ, the rupture must significantly decelerate

(or even stop in the case of an impenetrable barrier).

The actual range of observed average rupture veloc-

ities, typically 0.65–0.85cS, directly indicates that

r0ðnÞ is only marginally below ryðnÞ over most of the

fault area. Following OGLESBY and DAY (2002), one

can believe that r0ðnÞ values are 1.2–2 times below

ryðnÞ. Another argument in support of close corre-

lation of fields of r0ðnÞ and ryðnÞ follows from the

argument of LAY and KANAMORI (1981) who sug-

gested the existence of large-size stress peaks or

asperities on the fault plane, created in the course of

interseismic fault evolution; their reasoning applies

both to r0ðnÞ and ryðnÞ, and may well be valid for

asperities of various sizes, not only for large ones.

Based on these considerations, random field models,

which are used henceforth, are thought to be appli-

cable similarly to Dr(n) = r0(n) - rf(n) and s(n).

In the present paper, like (implicitly) in DK83,

DK86, s(n, t) is assumed to drop instantly at the

rupture front. This is simplification; generally, it

might be more realistic to assume a less abrupt dying-

out of cohesion (i.e. its evolution from ryðnÞ to the

‘‘stationary’’, low slip rate rfðnÞ at a point, related to

slip-weakening). However, the numerical estimates

of the cohesion zone width derived from laboratory,

geological and accurate seismological data (see e.g.

BEN-ZION and SAMMIS 2003) are very low, much

smaller than the cell size of the grid used here, and

related stress evolution during failure may be

assumed abrupt. There is, however, another possible

mechanism for stress drop to develop gradually, with

time-dependence of rfðnÞ related to possible

expressed velocity weakening (see e.g. DI TORO et al.

2011). In this way, rf values may drop down to

values significantly below those characteristic for low

slip rates; and formation of these low rf values,

related to accelerated local slip, may take appreciable

time. This possibility will be ignored in the

following.
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The model DK83 has been extended in DK86 (Case

F2) for an asperity surrounded by a larger low-friction

fault region of finite size 2Rc. In this case, fault-guided

waves do not run to infinity, but die away at the

boundary of this region, where they are diffracted and

converted to body waves. Having arrived at the recei-

ver, these constitute an additional term to the signal

(1a). This term is lagged behind by, approximately, Tc,

and its sign is opposite to that of (1a), say, negative. At

t » Tc the contribution of this term to residual body

wave displacement precisely compensates (1a). The

displacement signal can now be written as:

uSHðx; tÞ¼A

Z

Ra

sðnÞG x; t� ðR�n � cÞ=cþ tfrðnÞ½ �ð ÞdS

�AðF0=TaÞTc ð5Þ

where G(x, t) is an elementary signal generated by

radiator dS at n. It is assumed for simplicity that G(�)
are the same for all n within Ra. G(x, t) is a one-sided,

e.g. positive, trapezoid-like pulse, asymmetric, with

step-like leading edge and gradually decaying trailing

edge:

Gðx; tÞ ¼ HðtÞ �
Z

Kðx; sÞHðt � sÞdS ð6Þ

where K(x, t) is an appropriate unit-area window

function, with duration on the order of Tc; in the case

of far field, K(x, t) can be considered as independent

of n. In integration (5) the property of positivity,

inherent for G (x, t), is preserved. Thus, displacement

pulse uSHðx; tÞ is one-sided, as usual in seismology.

Its characteristic duration equals (1–2) Tc.

Figure 1
Cartoons of fault-guided (mostly Rayleigh) waves propagating from a single failing fault element DS, and of related far-field waveforms.

a (Case F1)—Rayleigh waves from a fault element DS that constitutes a small failing asperity on an unbounded frictionless fault; b (Case

F2)—same for an asperity located within a limited cohesionless area of size 2Rs. c (Case F3)—as the source of Rayleigh waves, an individual

element DS of earthquake rupture front is supposed (among many such elements). In c, instant positions are shown: of random multiply

connected rupture fronts, represented as a boundary (solid tortuous line) between unbroken (grey or pink in color) and slipping (white) areas;

and of a healing front with similar geometry, represented as a boundary (dashes) between slipping and locked-in (hatched) areas. The general

direction of rupture propagation (i.e. of the front strip or of ‘‘macroscopic front’’) is from left to the right. The area where Rayleigh waves from

DS propagate coincides with the ‘‘slip patch’’, of size 2Rs, associated with this DS. For each particular DS, an individual patch of this kind

exists. Rayleigh waves can propagate only within the limits of the slipping (white) area; this area is an overlap of slip patches associated with

all individual DS that constitute the instant position of a rupture front. Surface wave diffraction and tunneling are ignored; the abrupt screening

of the wavefield by obstacles shown on the sketch is a simplification only. Looking at the sketch c, one should keep in mind that it depicts a

snapshot; actually, both fronts are travelling and change their shape; a more adequate picture must be movie-like. d—far-field time histories of

displacement and velocity for the Case a (F1); e—same for cases b (F2) and c (F3)
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5. Earthquake Source Model (Case F3)

5.1. Running Slip Pulse and ‘‘Slip Patch’’

Case F2, considered in DK86, is one when fault-

guided waves propagate away from a small single

asperity. On the basis of DK86 and DK88, and

following B88 and G88, one can generalize this case

and believe that radiation from an earthquake source

of a general kind can be represented again by the

same Eq. (5), modified as:

uSHðx; tÞ ¼ A

Z

R

sðnÞG x; t� ðR� n � cÞ=cþ tfrðnÞ½ �ð ÞdS

� AðF0=TaÞTc

ð5�Þ

Here, integration is spread from a small patch Ra

onto the complete fault area R, of size 2Rc. Now let

us replace the integral in (5*) by the integral sum

over small elements DS. Each DS, be it strong (an

element of a true asperity or an entire such asperity)

or weak, now plays the role of a single asperity of

DK86 (of size 2Ra) and is now included in summa-

tion. Elements DS are assumed to be of comparable

size and isometric, and their characteristic size can be

written as DS0.5.

In a partial analogy with Case F2, let us consider a

patch on the fault plane, around DS (‘‘slip patch’’ of

B88), that temporarily loses cohesion after rupture

passes over DS. Within this patch, fault slip is

localized associated with stress drop at DS(n), and

fault-guided waves generated by DS have non-zero

amplitude. The characteristic size of the slip patch is

denoted as 2Rs � DS0.5. Different from with G88

and B88, it is assumed that this size is significantly

smaller than the source size: Rs 	 Rc. Overall, the

following double inequality is assumed true:

DS0.5 	 Rs 	 Rc. It should be emphasized that for

each individual DS (each n), there is an individual,

specific slip patch. Still, the notion of a characteristic

or average slip radius is considered meaningful.

A critical further assumption is based on the

observation that the conditions of low cohesion

around a point n are realized just when the running

slip pulse crosses its neighborhood. Thus, one can

believe that the slip patch size 2Rs and the slip-pulse

width l of SPM (Fig. 1c) are close to one another.

The assumption 2Rs & l is the key one here. The

relative value of Rs as compared to Rc is a significant

model parameter. The denotation CH = l/L will be

used to recall Haskell and Heaton, originators of

SPM, and it is assumed here that Rs/Rc = CH. It

should be noted that slip patches associated with

individual failing fault elements DS that constitute the

entire instant rupture front overlap to a large degree,

and their aggregate (union) is assumed here to

constitute the strip instantly occupied by propagating

slip pulse.

The shape of the specific G(x, t) function asso-

ciated with particular n depends on the rupture front

configuration and evolution in the vicinity of n, on

details of propagation and decay of fault-guided

waves radiated by DS = DS(n), and also on the ray

direction c. To obtain approximate numerical esti-

mates, the dependence of G(x, t) on n and c is ignored

in what follows, and for any n, the tentative pulse

shape is taken after B88 as:

Gðx; tÞ ¼ G0ðtÞ

¼ HðtÞ � 0:5ð1þ cos p t=TBÞ; t\TB

0 t [ TB

�

ð7Þ

Here, TB is pulse duration, set as 1.667Tr to

provide the value of the centroid of the pulse (7) to be

equal to 0.5Ts = 0.5l/v. Thus, the distance of com-

plete decay of guided-wave amplitude is set as

1.667l.

The complete body wave displacement pulse (5,

5*) with its amplitude of the order AF0Tr/Tc and

duration of the order of Tc has its integral close to

AF0Tr = (A/cS)F0�2Rs. As usual, such an integral is

related to the seismic moment M0 of the source.

Generalizing the results of DK86, B88 one can write:

M0 � F0 � 2Rs ¼ F0l: ð8Þ

where F0 is the total seismic force of an earthquake

source (see Eq. 2). [Note that F0 as introduced here is

a dynamic entity defined by s(n), not a static one

defined by Dr(n)] For more accurate calculations,

one should account for the position of the DS patch

within source area. In DK86, asperity was positioned

at the centre of a circular fault. For asperity (or

DS patch) located arbitrarily, factor A in (5) depends

on the position of asperity within the large source,
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and includes an additional coefficient, equal to 2/3 on

the average for the case of circular source (B88). The

variation of factor A over the fault area is neglected,

and the average coefficient 2/3 is assumed to be

incorporated into the value of factor A.

In DK88, a fault is simulated through multiple

local asperities, and waveforms were analyzed that

result from their breakdown. It was found that at

some points, negative stress drop may appear, but

with relatively small, negligible amplitude. Also, for

natural earthquakes, there is a possibility of overshoot

during the previous event on the same spot of a fault;

this again may create limited negative stress drop.

Still, the results of DK88 suggest that such effects

must be secondary, not so strong as to violate the

assumption of non-negativity of the wave displace-

ment pulse (5, 5*). For this reason, the simple

assumption of positive s(n) combined with positive

G0(t) was considered acceptable.

As one can see from DK83, the theory derived

above will be valid also for P waves with evident

modification of using single-force P radiation pattern.

The case of SV waves (polarized in a plane orthog-

onal to R) is more complicated as complex

coefficients may arise in this case. This does not

significantly affect noise-like HF waveforms. Thus,

one can consider the developed approach to be

mostly valid for body waves and especially for their

amplitude spectra.

5.2. Stress Drop Field

In his stochastic fault model, ANDREWS (1980)

assumed that final slip D(n) is a self-similar (in a broad

sense, or ‘‘self-affine’’) random function with 2D

Fourier spectrum close to 1/ka. This behavior can be

accurately valid only over an infinite plane. For the

case of a source of finite area, low-wavenumber cutoff

must be applied; also, for the case of tectonic

earthquake, D(n) must have positive average. More-

over, both seismogeology and inversions indicate that

D(n) can be assumed to be positive over entire R
despite minor deviations found by some inversions.

The assumption of self-similarity approximately

agrees with the results of inversions of real sources

(TSAI 1997; SOMERVILLE et al. 1999; MAI and BEROZA

2002). ANDREWS (1980) notes that fields of final slip and

of static stress drop Dr(n) are rigidly connected. In the

wavenumber domain, for an infinite fault, their rela-

tionship is close to multiplication by k1; therefore,

Dr(k) � 1/kb = 1/ka-1, and similar behavior is further

assumed for s(k). As a refinement of self-affinity, strict-

sense self-similarity [Hurst exponent H = 1 for D(n)]

was also proposed and substantiated for real faults by

ANDREWS (1980); in such a case b = 1 (and a = 2).

Although the analysis of inverted final slip maps does

not accurately match the hypothesis that a = 2 (and

thus b = 1), the simple assumption that b = 1 will be

used henceforth as the most plausible from general

physical considerations. The selection of amplitude

spectral shape sðkÞ / 1=kb requires power spectrum of

s(n) to behave as 1/k2b; in this way, correlation

properties of random field s(n) are specified.

To perform the simulation, one must also specify

the probability law for (positive) local random values

of s(n). The relative scatter of these values (relative

with respect to their own mean) is set through

coefficient of variation CVs ¼ ðVarðsðnÞÞ0:5=EðsðnÞÞ;
as for the distribution law p(s), it is assumed

lognormal. Note that the particular choice of the

lognormal law has no solid basis: one might use, e.g.,

Weibull or gamma law. What is really significant is

the behavior of the tails of p(s). Because of (1b) and

(5*), these tails can be expected to be related to

similar tails of velocity and acceleration amplitude

peaks of HF radiation. This important connection

should not be thought of as a general one; it is valid in

the limited proportion of cases when the distorting

effects of path and site are not too strong, and the

duration of an accelerogram is not much expanded

because of scattering and multipathing (cf. GUSEV

1988, 1996). It also should be kept in mind that the

relationship between tails of p(s) and those of peak

amplitudes is not immediate, as discussed in GUSEV

(1992). In the case when tails of the p(s) distribution

law are sufficiently heavy, they are almost directly

reflected in the tails of amplitude peaks. With less

expressed tails, this relationship is less close. The

question of acceleration peak statistics was recently

discussed in GUSEV (2011a, 2013a) in some detail;

that discussion implies that the upper tail of the

distribution of the observed peak acceleration is only

moderately heavy. The use of lognormal law with

CV = 0.7–1.0 for acceleration peaks seems to be a

Vol. 171, (2014) Doubly Stochastic Earthquake Source Model 2591

Author's personal copy



reasonable starting approximation. On a different

line, in GUSEV (2011b), the statistics of inverted slip

distributions was analyzed, and it was found that the

distribution of local final slip can be approximated by

the lognormal law with CV & 1.0 (or by exponential

law). Unfortunately, these fragments of information

do not match well: one can expect tails of the

distribution of acceleration peaks to be relatively

enhanced (and corresponding CV value tangibly

larger) as compared to peaks of slip distribution.

Still, for want of anything better, similar lognormal

law, with CVs in the range 0.7–1.0 was used for

simulation of s(n). Simulated values of s(n) are

positive, as assumed above. Note that the operator

that converts s(n) to D(n) is convolution with positive

kernel; therefore, D(n) is also a positive function.

5.3. Random Rupture Front and a Technique for its

Simulation

The shape of the earthquake rupture front is

traditionally thought to be a smooth line. Such a line

has a well-defined local normal, and it defines the

local direction of rupture propagation. This concept

needs to be generalized for the case of a ‘‘lacy’’

random rupture front as introduced here. (Generally,

one can imagine random fronts whose realizations are

kept smooth, but this degree of randomness is too

weak for our purpose). Let us first consider mean

(ensemble-average) evolution of a rupture front, and

assume the mean front to be again a smooth line with

a well-defined normal. In the vicinity of a certain

point n let us consider the coordinate x0 along this

normal, with x0 = 0 at the crossing of the normal with

mean front, and let us introduce ‘‘front arrival time

function’’ tfr(x
0). Now consider points of the normal at

a certain time moment. The mean front forms a

crossing at a single point x0 = 0 as defined; sample

random fronts will cross the normal at various points

around x0 = 0 forming a probability distribution

p(x0). It should be emphasized that each single

sample ‘‘lacy’’ front will, as a rule, form many

crossings with the normal. Thus, even a single ‘‘lacy’’

front will occupy a finite interval on the x0 axis. When

normals are considered for many points of the mean

front, these intervals form a finite band along a mean

front, or ‘‘front strip,’’ of characteristic width

w. Instead of fixing time moment, one can broaden

a viewpoint and consider front arrival time tfr(x
0) as a

function of x0. In the deterministic case, tfr(x
0) is a

one-to-one and monotonous function. In the stochas-

tic case, tfr(x
0) is, normally, not monotonous, and the

inverse function x0(tfr) becomes, typically, multiple-

valued. As usual, assuming ergodicity, one can

believe that mean (ensemble-average) fronts can be

estimated (and visualized) as smoothed or low-k-

passed versions of sample fronts. Such mean or low-

resolution fronts of smooth shape, can be called

‘‘macroscopic fronts’’, whereas the actual high-reso-

lution lacy shape can be called ‘‘microscopic front’’.

Complex non-monotonous evolution of fronts is a

necessary condition for formation of usually observed

incoherence of high-frequency radiation from a

source. This consideration is mentioned only very

loosely by BOORE and JOYNER (1978) but clearly in DAY

et al. (2008). Dynamical rupture models with marked

contrasts of stress drop show jumps of the front (DAY

1982), meaning multiple-valued x0 (tfr). Observations

(SPUDICH and CRANSWICK 1984; ARCHULETA 1984)

reveal qualitatively the same phenomenon. Following

GUSEV (2013a), it is assumed further that the rupture

front is ‘‘lacy’’. It is a wiggling line accompanied by

‘‘lakes’’ and ‘‘islands’’, or a ‘‘polyline’’; it is multiply

connected. After the works of Mandelbrot, it is natural

to assume this polyline to have fractal geometry; this

assumption also greatly simplifies its simulation. The

polyline occupies the ‘‘front strip’’ of width w. It is

assumed that w is close to l, and the relationship w & l

is followed in simulation. At the same time, simulation

is organized so that w is close to 2Rs, this is attained by

the proper selection of TB = (5/3) Ts in (7). To provide

these properties, and make the contours of the mean or

smoothed front look plausible, the front arrival time

(failure time) at n is represented as the sum of three

terms:

tfrðnÞ ¼ QdetðnÞ þ QrndðnÞ þ QlkðnÞ ð9Þ

Here

(i) QdetðnÞ is deterministic term that describes the

systematic behavior of rupture front, simulated as

QðnÞ = |n 2 nh|/v where nh is the hypocenter that

represents the vertex of the cone t = Qdet(n1, n2).

In itself it forms accurately circular mean fronts.
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(ii) QrndðnÞ) is a random, stochastic term that

provides the geometry of the rupture front that

is ‘‘lacy’’ at any time instant, with wiggling shape

and fragmented structure. It is a sample of a self-

similar random function, is positive, and has a

preset spectrum � 1/kd. The distribution law for

local values of QrndðnÞ is selected as Rayleigh

law, with twice the mean value equal to

Tw = l/v = Ts = Tr. Therefore, the microscopic

front wiggles within the front strip, of width

w = l, that trails after the macroscopic front. The

trailing edge of this strip constitutes the ‘‘mac-

roscopic healing front’’. The condition Tw & Ts

provides the required match between the propa-

gation distance of fault-guided waves and the

width of slip-pulse.

(iii) QlkðnÞ is another random, stochastic term of

limited amplitude and secondary importance. It

has smooth relief, ensured by imposed low-k

spectrum. It perturbs unrealistic, primitive cir-

cular shapes of mean fronts as generated by

QdetðnÞ. It is simulated by the same procedure as

used for QrndðnÞ, with low-k filter added and a

somewhat modified set of other parameters.

Overall, a smoothly propagating ‘‘macroscopic’’

front is formed by the sum of QdetðnÞ and QlkðnÞ,
whereas QrndðnÞ is a perturbation term that provides

fine ‘‘microscopic’’ details.

The described procedure has certain weakness.

The value of l (and thus Tw) was implicitly assumed

as fixed during front propagation. The assumption of

a fixed l value makes relative front perturbation

overly strong at the early stages of rupture growth,

when instant rupture size is comparable or even lower

than w and/or l. To amend this deficiency, Tw (and

implicitly Tr) is made time dependent:

TwðnÞ / QdetðnÞg. The preset Tw value discussed

above is considered as an average value over entire

fault, and used to properly scale the TwðnÞ function.

6. Simulation and Its Results

The developed numerical procedure includes the

following steps (the accepted parameter values are

given in parentheses):

(a) selecting: the size of a rectangular source

(L 9 W = 38 9 19 km, corresponds approxi-

mately to the magnitude range M = 6.8–6.9),

time step dt (0.013 s), distance step dx

(0.037 km); v (3.0 km/s); cS (3.5 km/s); hypo-

center position nhðn1 ¼ 0:12L; n2 ¼ 0:24WÞ;
(b) setting control parameters: b(1.0), CH,

(0.0075 7 0.24), CVs (0.8), g(0.5) and d(1.2);

the shortest wavelength for QlkðnÞ) is set close to

1.5 km.

(c) generation of random fields tfrðnÞ and sðnÞ
(Fig. 2);

(d) calculation of uSHðn; tÞ � uðtÞ through (5*, 6, 7)

(Fig. 3a) and of its amplitude spectrum u(f);

(e) determination of normalized displacement ampli-

tude spectrum unðf Þ � uðf Þ
.

uðf Þjf¼0 and of

associated acceleration spectrum €unðf Þ (Fig. 3b).

The discussed modeling procedure is entirely

kinematic, and no connection is assumed between

tfrðnÞ and sðnÞ. For plotting, all simulated spectra are

smoothed at moderate-to-high frequencies using log-

equal bins (three bins per octave). Spectra are nor-

malized by displacement pulse area uðf Þjf¼0 (i.e.

Figure 2
a Propagating rupture front of a sample simulated source. Positions

of the front, i.e. isolines of the sample tfr (n) function, are plotted

each 0.89 s. Shades of gray code time: the later, the lighter. Black

dot is the nucleation point. b Sample random field s(x, y) with 1/

k mean amplitude spectrum; shading reflects amplitude; maxima

are darker
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always setting M0 value to unity). This allows one to

cancel all parameters involved in A, and to concentrate

on shapes and relative levels of spectra that are of main

interest in the present study. The lower (common)

corner frequency fc1 of simulated spectra is essentially

constant as it is mostly defined by L, nh, and v, all of

them fixed. This means that not only magnitude, but

also global stress drop of simulated sources is fixed.

Simulated signals uðtÞ; _uðtÞ and €uðtÞ (Fig. 3a)

qualitatively agree with those observed in real

earthquakes at moderate distances from a fault. (No

attempt is made here to imitate records obtained close

to a fault.) The average smoothed acceleration

spectrum (Fig. 3b) is flat, and clearly shows the

second corner-frequency fc2. Both these features also

qualitatively agree well with observations, and

moreover with the x-2 model, in its two-corner

(e\1) version after BRUNE (1970).

The parameter that controls the shape of the

acceleration spectrum most significantly is CH; it

affects both the relative level of acceleration spec-

trum and the position and degree of expression of the

fc2 corner. Its role is seen in Fig. 4: the fc2 corner is

manifest clearly when CH B 0.12. At larger CH it

disappears, and a simple x-2 shape with no distinct

fc2 corner can be expected at CH about 0.15–0.20. Let

us denote actual flat acceleration spectral level as

AHF, and its value for the primitive x-2 shape of the

case fc1 = fc2 (grey dashes on Fig. 3) as A1HF. The

following approximate relationships hold

fc2=fc1 � 0:67=CH ð10Þ

AHF=A1HF � 0:17=CH ð11Þ

The most significant fact here is that of approxi-

mate inverse proportionality. The numerical factors

are interesting; however, they are not of general

Figure 3
Typical results of simulation. a—Signals _u1ðf Þ; _uðtÞ; uðtÞ and €uðtÞ
at the receiver. Amplitude scale is arbitrary. b—Normalized

spectra €unðf Þ (dashes) and unðf Þ (solid line), raw (on the left, at

lower f) and smoothed (on the right). Thin lines: ten individual

spectra; thick curve: their average. In this and further pictures, gray

angular shapes on the background are schematic spectra of the

common x-2 model; their corner frequency fc1 is set equal to 1/2p
Trms, where Trms

2 is the average second normalized central power

moment for uðtÞ (SILVER 1983). Gap in a spectral curve on this and

next figures indicates switching from raw to smoothed spectra

Figure 4
Normalized simulated spectra €unðf Þ (solid lines, purple online), and

unðf Þ (solid blue online, dashes on paper), averaged over 50

realizations, for a set of values of relative slip-pulse width CH, at

fixed values of other parameters
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validity, and may depend, e.g., on the aspect ratio of

the fault, or on the selection of the CVs parameter.

Between fc1 and fc2 the acceleration spectral shape

can have a f1.0 segment but on the whole deviates

from a simple f1.0 line connecting two corners; it

shows certain concavity in the range (1–1.4) fc1.

The simulation results were tentatively checked

against real spectra using the well-established

empirical spectral model of HALLDORSSON and PAPA-

GEORGIOU (2005) for the interplate data set. From

Fourier spectral shapes expected from their spectral

family at Mw = 6.8 one can crudely estimate the

parameters fc2/fc1 and AHF/A1HF; their values are

about 7 and 4, correspondingly. From (10) and (11)

one can obtain from these numbers the estimates for

CH equal to 0.1 and 0.04, correspondingly. Their

average value is 0.07, quite comparable with original

HEATON’S (1990) estimate of 0.1.

7. Frequency-Dependent Directivity

and Incoherence

It was interesting to analyze directivity features of

the described model and, particularly, frequency

dependence of directivity. Two aspects of directivity

are angular dependence of spectral amplitudes, and

that of characteristic frequencies (Doppler effect).

The numerical procedure that followed Eqs. 5–7 was

performed for the fixed CH = 0.06, v/cS = 0.85 and

for a set of angles h between (1) the rupture propa-

gation direction, taken as the positive direction of the

n1 axis (abscissa on Fig. 2), and (2) the direction of

the receiver ray; these two angles define the c vector

in (5). The y component of the ray vector equals zero.

The following set of h was used: h = 0, 45, 90, 135,

180�. Average spectra were calculated over 50 sim-

ulation runs (Fig. 5); they show the following

features (numerical estimates are specific for the

selected v/cS and CH but qualitative conclusions seem

to be of wider applicability):

1. In the frequency band around fc1,90 and up to

approximately fc2,90, both mentioned angular

dependencies—for spectral levels as well as for

the fc1 value—are clearly seen, in a close match to

the textbook behavior of deterministic unilateral

fault models. The value of fc1 varies from 0.027 to

0.18 Hz, broadly deviating up and down from

fc1,90 = 0.055 Hz.

2. In the discussed band, the contrast of spectral

amplitudes is at its maximum (up to ten times) at

f & 3fc1,90; above f = fc2 & 5 fc1,90 & 0.27 Hz,

the contrast diminishes, down to about three times

at 3 Hz, and almost disappears at 10–15 Hz.

3. No clear variation of fc2 with h can be noticed.

4. Taking fc2,90 as the reference, the critical fre-

quency fucoh where the transition from LF

enhanced to HF diminished directivity takes place

is fucoh & (1–2)fc2. This critical frequency can be

understood as a change from mostly coherent to

mostly incoherent behavior of the radiator. The

general correspondence between fucoh, fc2 and 1/Tr

has already been proposed in GUSEV (2013a), see

also BERNARD and HERRERO (1994).

SOMERVILLE et al. (1997) analyzed frequency

dependence of directivity for vicinity of a fault, but

Figure 5
Angular dependence of normalized acceleration spectrum €unðf Þ
obtained by averaging over 50 simulated sample sources with size,

geometry and hypocenter as shown in Fig. 2, with approximate

magnitude Mw = 6.8–6.9. Five spectra are plotted for angles h = 0

(forward), 45, 90, 135 and 180� (backward) between the n1 axis and

the ray to the receiver. Fault parameters: CH = 0.06, CVs = 0.8,

d = 1.2. The gap in the curve indicates switching from raw to

smoothed spectra. Spoon-like symbols indicate fc1 positions. They

were determined via Trms as explained in the caption of Fig. 3.

Arrow-like symbols indicate approximate fc2 positions, where

discernible
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their qualitative results can be expected to be

approximately valid also for larger distances. Their

analysis sets the just defined transition frequency fucoh

at about 1.5–2 Hz. This value is in approximate

agreement with the transition from high to low

amplitude contrast that, according to simulation

(Fig. 5), takes place within the frequency band

0.4–3 Hz. Although the analysis of SOMERVILLE et al.

(1997) was performed in bulk for many earthquakes

with various magnitudes, our approximate magnitude

range M = 6.7–6.9 (based on the value of the fault

area) generally agrees with the dominant range of

magnitudes studied in SOMERVILLE (1997). Still, the

degree of HF reduction of directivity attained in the

present model seems to be somewhat weaker as

compared to empirical directivity studies.

8. Discussion

BOORE and JOYNER (1978) and JOYNER (1991) tried

to analyze HF radiation on the basis of the notion that

one can describe incoherency through non-uniform,

random 2D slip rate, and/or non-uniform, random

local rupture velocity. However, directivity produced

by such a model is unrealistically high; the reason is

that phase shifts created by such randomization are

insufficient to create mutual cancellation of ampli-

tudes which is required to provide ‘‘energy-style’’

summation of contributions of fault spots, in place of

‘‘amplitude-style’’ summation. See GUSEV (2013a) for

further discussion. Random phasing of pulses from

fault spots (GUSEV 1983) is a critical condition to

provide realistically low directivity. The present

model seemingly needs adjustment in order to pro-

vide a greater, more realistic degree of reduction of

directivity at HF; this means, simultaneously, less

degree of coherency.

Some researchers proposed locally random ori-

entation of an instant, local rupture velocity vector

within small fault patches (KOYAMA and IZUTANI 1990;

BERNARD and HERRERO 1994). Similarly, random

omnidirectional orientation of an instant, local rup-

ture front is assumed in DAY et al. (2008). This view

contradicts in no way the model presented here. Just

the opposite; it is easy to see that in a ‘‘microscopic’’,

small-scale view, the ‘‘lacy’’ rupture front assumed

here is indeed, to a large degree, omnidirectional. A

close examination of the example case in Fig. 2a

shows quite irregular orientation of local normal to

the instant rupture front, created by its various wig-

gles, ‘‘islands’’ and ‘‘lakes’’. It should be noted that in

the present model, there is a definite mean (‘‘mac-

roscopic’’) direction of propagation of rupture front/

front strip; this systematic behavior must result in

certain correlation between arrival times of the

mentioned elementary pulses. The obtained numeri-

cal results show that the postulated ‘‘lacy’’ structure

significantly reduces possible directivity related to

such a correlation. Experiments (not shown here)

show that in the case of the rupture front of zero

width, but with G0(t) pulse of finite duration, no

directivity reduction takes place at arbitrary high

frequency.

In addition to significant general reduction of

directivity, BERNARD and HERRERO (1994) found the

secondary effect of a residual cos2h directivity with

enhanced 0� and 180� directions, and reduced 90�
direction (see their Fig. 7a, b). The present model

does not support this prediction.

GUSEV (2011a) proposed a strong-motion simula-

tion procedure that features lack of directivity for

sufficiently high frequencies; the analog of fucoh was

set (ad hoc) at 7.7fc1. At higher frequencies, point

subsources of the source model of GUSEV (2011a)

have no intrinsic directivity. Time histories of these

subsources are simulated as uncorrelated, thus their

relative phases are random and coherence in this

frequency range is suppressed. Alternatively, fre-

quency-dependent coherence can be imposed, with

correlation radius proportional to wavelength (GUSEV

1983). Generally, partial coherence amplifies a signal

at a receiver as compared to complete incoherence.

This model may be used to clarify the question

whether frequency-dependent coherence may affect

directivity by itself, without any effects related to

details of rupture front evolution. This research may

be interesting.

There is a significant inter-event scatter among

strong-motion parameters, estimated as an inter-event

component of scatter of observed strong-motion

amplitudes with respect to their mean trends descri-

bed by GMPE for a given M0 and distance. From the

viewpoint of the present model, such a scatter of

2596 A. A. Gusev Pure Appl. Geophys.

Author's personal copy



amplitudes has multiple causes, including the vari-

ability of at least the following parameters: (1)

average rupture velocity v; (2) global stress drop sgl,

not discussed here, on the order of M0/LW2; (3) rms

local stress drop rs ¼ CVssgl, (4) relative slip-pulse

width CH. All these parameters must contribute to

inter-event scatter, as well as to also very interesting

inter-regional scatter, but the presented results do not

permit us to isolate the most relevant parameter or

parameters. My opinion is that parameters 2 and 4 are

the most significant, but this statement has no solid

basis.

From a tectonophysical point of view, the

hypothesis of lacy rupture front is the only natural

one. As noted in G88, corrugated or rough geometry

of fault walls dictates spotty contact between them

(or at least heavy-tailed distribution law for fault

strength). With an increasing amount of data

regarding complex geometry of faults and of instant

rupture fronts, the idea of a smooth, simple,

‘‘Euclidean’’ shape of rupture front becomes less and

less plausible.

9. Conclusion

The developed ‘‘doubly stochastic source model’’

provides a workable broadband description of earth-

quake source radiation. It is based on transparent

concepts, most of which are not new. A fresh idea is

one of a ‘‘lacy’’ fractal rupture front (GUSEV 2013a),

an almost inevitable assumption when considering

the impossibility to suppress effectively HF direc-

tivity in another way. The only really new but critical

idea is to relate the size of a slipping patch around an

element of the fault plane with the width of propa-

gating slip pulse.

The proposed model permitted us to emulate two

well-established features of source spectra: the almost

ubiquitous ‘‘omega-square’’ HF branch, and often-

observed two-corner spectra. Formation of the second

spectral corner, as proposed by a few researchers, is

associated, on a conceptual level, with existence of a

narrow slip pulse. The particular mechanism for this

connection is proposed, and a particular tentative

relationship between the slip-pulse width and spectral

corner is found.

The simulation suggests that slip-pulse width

controls not only the position of the second spectral

corner, but also the amplitude level of acceleration

spectrum. This relationship, revealed by numerical

simulation, may provide at least a partial explanation

of the scatter of HF ground motion amplitudes at a

certain particular set of values of magnitude, global

stress drop and v/cS (Mach number w.r.t S waves).

This conclusion may be important for earthquake

hazard applications. In addition, it might be inter-

esting to apply an empirical check to the model

prediction (that directly follows from Eqs. 10 and 11)

that the values of second corner frequency and

acceleration spectral level must be positively

correlated.

The range of values of the slip-pulse width to fault

length ratio CH needed to generate realistic spectral

shapes, of approximately 3–15 %, matches well with

the original estimates of HEATON (1990) based on

radically different information. At high values of CH,

the model generates single-corner spectra. Therefore,

observations of single-corner, clearly double-corner

or intermediately shaped spectra in real earthquakes

can be associated with the natural variations of the

CH parameter.

The developed model manifests frequency-

dependent directivity, with high low-frequency

directivity in accordance with common deterministic

fault models, and diminished high-frequency direc-

tivity that reflects partial incoherence of the source

for this frequency range. An estimate is obtained for

the critical frequency fucoh where the transition

between these regimes takes place; this estimate

matches observations reasonably.
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