УТОЧНЕННАЯ СВЯЗЬ *ML-М*^w ДЛЯ КАМЧАТСКИХ ЗЕМЛЕТРЯСЕНИЙ УМЕРЕННЫХ МАГНИТУД (*M*=3-6)

¹И.Р. Абубакиров, ^{2,1,3}А.А. Гусев, ¹Е.М. Гусева, ¹В.М. Павлов, ^{1,3}А.А. Скоркина ¹КФ ФИЦ ЕГС РАН, г. Петропавловск-Камчатский ²ИВиС ДВО РАН, г. Петропавловск-Камчатский ³ИФЗ РАН, г. Москва

Аннотация. Для множества задач предпочтительна шкала моментных магнитуд Mw, которая принципиально отличается от остальных тем, что связана с сейсмическим моментом M_0 очага ($H \cdot m$). При этом опорной шкалой в регионе является ML, получаемая преобразованием энергетического класса $K_{Sl,2}^{F68}$. Накопленный архив цифровых волновых форм позволил применить методику массового определения M_0 (и Mw) и уточнить связь ML-Mw для землетрясений Камчатки с M=3-6.

Abstract. Many tasks require moment magnitude Mw scale since it dramatically differs from the other scales by being tied to a source seismic moment M_0 (units are Newton meter). However, the reference magnitude scale in the region is ML obtained by conversion of energy class $K_{S1,2}^{F68}$. Accumulated waveforms of the digital network allowed applying method of mass M_0 (and Mw) estimation and then adjusting ML-Mw relationship for Kamchatka earthquakes of M=3-6.

Введение

Для оценки величины землетрясения существует несколько разновидностей шкал. Опорной магнитудой для камчатских землетрясений считается региональная шкала ML, которая определяется пересчетом из $K_{S1,2}^{F68}$ С.А. Федотова [1] по формуле: $ML = K_{S1,2}^{F68} / 2 - 0.75$ [2]. Однако для многих задач предпочтительной является шкала моментных магнитуд Mw [3], принципиально отличающаяся от других ранее предложенных шкал магнитуд тем, что жестко связана с сейсмическим моментом очага, M_0 :

 $Mw = (2/3) \cdot (\lg M_0 [H \cdot M] - 9.1).$

(1)

Моментные магнитуды для сильных камчатских землетрясений последних лет, получаемые по методике [4, 5], приведены в глобальном каталоге GCMT (порог определения Mw=4.7–4.8 и выше). Также ряд независимых оценок Mw для самых сильных землетрясений прошлого скомпилирован и критически обобщен в [6]. Отметим, что впервые эмпирически установленная для Камчатки связь Mw-ML [7], полученная в эпоху аналоговой регистрации, опиралась, в основном, на оценки Mw из глобального каталога (т.е. полученная связь характеризовала диапазон от $Mw\approx4.5$ и выше).

Развернутая в 2006–2010 гг. на Камчатке сеть цифровых приборов [8] и накопленные волновые формы, уточнение региональной модели затухания [9] позволили применить методику массового определения сейсмического момента M_0 и далее получить связь ML с Mw на новом качественном уровне для диапазона магнитуд ML=3-6.

Исходный набор данных

Для определения сейсмического момента M_0 (и далее Mw) применили два подхода и, в силу требований методик, сформировали две коллекции записей землетрясений с перекрытием. В целом охвачен район с координатами 48.0–57.5°N, 153.5–165.5°E за период 2010–2014 гг. и с глубинами очагов не более 200 км (рис. 1). Коллекции отличаются количеством землетрясений и набором станций. Первая коллекция (рис. 1 а, $K_{S1,2}^{F68}$ =9.0 и выше) состоит из записей станций: «Петропавловск» (РЕТ), «Апача» (АРС), «Усть-Камчатск» (КВG), «Никольское» (ВКІ), «Северо-Курильск» (SKR), «Ключи» (КLY) и «Эссо» (ЕSO). Вторая коллекция (рис. 1 б, $K_{S1,2}^{F68}$ =7.0 и выше) включает записи приборов, расположенных на скальных или плотных грунтах: «Дальний» (DAL), «Ходутка» (КDT), «Карымшина» (КRM), «Петропавловск» (РЕТ), «Русская» (RUS), «Школа» (SCH), «Шипунский» (SPN) и «Институт» (IVS).

Для каждого землетрясения в каждой из коллекций имеется не менее трех записей с оптимальным соотношением сигнал/шум на «рабочих» частотах.

Рис. 1. Набор станций и эпицентры землетрясений коллекции № 1 (а) и № 2 (б). Расшифровка обозначений подходов к оценке Мw приводится далее в тексте

Методы определения сейсмического момента Мо

Для определения сейсмического момента M_0 по сейсмическим данным существует два основных подхода: (1) решить обратную задачу, а именно, провести инверсию широкополосных волновых форм с использованием теоретических сейсмограмм; (2) использовать уровни низкочастотной части (НЧ) площадки очагового спектра смещения по данным объемных волн.

Подход (1) – через определение тензора сейсмического момента центроида (эквивалентного точечного источника) – для глобальной модели Земли осуществляется в рамках проекта GCMT. Эти данные обозначим – Mw^{GCMT} . Подход (1) также реализован в КФ ФИЦ ЕГС РАН [10] для региональных землетрясений, но с применением менее низкочастотной фильтрации. Результаты расчетов по этой методике обозначим Mw^{RSMT} (рис. 1 а), где RSMT – региональный тензор сейсмического момента эквивалентного точечного источника. В результате подхода (1) получаем тензор $M_{ij}=M_0 \cdot m_{ij}$, где M_0 – искомый скалярный сейсмический момент, а единичный тензор m_{ij} задает механизм очага. Полученное значение M_0 пересчитывается в Mw здесь и далее по формуле (1). Оценки Mw^{RSMT} сопоставимы с Mw^{GCMT} (53 пересечения, μ =–0.09, σ =0.08). При этом фактический нижний порог определения Mw опускается с Mw=4.8 для Mw^{GCMT} до Mw=3.5 для Mw^{RSMT} .

Уточнение региональной модели затухания [9] и массовый счет очаговых спектров для камчатских землетрясений [11], в том числе очаговых спектров смещения, позволили применить подход (2). Были опробованы три модификации спектрального метода, которые отличаются способом счета спектра и/или временным окном для счета спектра. В первой из модификаций (2.1, предварительный этап) использован расчет спектра методом БПФ для группы S-волн (выбор временного окна осуществлялся интерактивно); такие оценки обозначим Mw^{SF} , где F – Fourier. Во второй модификации (2.2) при расчете

спектра использовали многополосную фильтрацию группы *S*-волн – Mw^{SB} , где В – Band. В третьей модификации (2.3) в качестве исходного материала использовали записи обратно-рассеянных *S*-волн (коду), которые подвергали многополосной фильтрации; такие оценки – Mw^{CB} , где С – кода, В – Band (рис. 2 б). Отметим, что модификации (2.2), (2.3) реализованы в автоматизированном режиме.

Рис. 2. Зависимость *ML(Mw)*, где оценка *Mw* выбрана следующим образом:

для $ML>5 - Mw^{RSMT}$ (1), для $ML\leq5 - Mw^{CB}$ (2). Наклон, соответствующий типу связи «1:1» (3). В предположении линейной связи с наклоном *b*=1: средняя связь (уравнение (а), 4), диапазон ± стандартное отклонение (5). Аппроксимация линейной ортогональной регрессией без фиксации наклона (уравнение (б), 6)

В модификациях (2.1) и (2.2) для приведения наблюденных спектров S-волн к очаговым вносилась поправка за потери вдоль луча, для чего воспользовались оценками $Q_S(f)$ из [9], и за разницу в импедансах [11]. Геометрическое расхождение для объемных S-волн принимали сферическое (1/r). В модификации (2.3) использовалась двухшаговая процедура. Сначала спектр мощности коды, измеренный в подходящем окне, пересчитывался в спектр S-волн на фиксированном расстоянии, следуя методике Т.Г. Раутиан [12] на эмпирической основе; далее полученную оценку для спектра S-волн пересчитывали в очаг тем же путем, что и в (2.1) и (2.2). Важный элемент подхода (2) – это использование эмпирических спектральных станционных поправок, которые позволяли привести станционные спектры к условиям опорной скальной станции PET.

В подходе (2) оценку сейсмического момента *M*₀ определяли из уровня низкочастотной (НЧ) площадки спектра смещения и оценивали по формуле:

$$M_0 = \frac{\Omega_0 4\pi \rho r_0 V_s^3}{0.63 \times 2.0},$$
 (2)

где Ω_0 – уровень НЧ площадки спектра полного вектора смещения *S*-волны (*м c*), приведенного к условиям однородного упругого полупространства, ρ – плотность среды ($\kappa z/m^3$), r_0 – стандартное гипоцентральное расстояние (*м*), V_S – скорость *S*-волн (*м/c*), 0.63 – среднеквадратическая по фокальной сфере диаграмма направленности для *S*-волн и 2.0 – коэффициент, учитывающий эффект свободной поверхности. Принимали ρ =3300 $\kappa z/m^3$ и V_S =4700 *м/c*, как и в [13]. Наблюденные спектры приводили к расстоянию r_0 =50 κm с помощью эмпирических функций затухания («калибровочных кривых»). Искривление лучей в расчетах не учитывалось.

Оценки Mw по нескольким станциям (не менее двух) осреднялись. Суммарные оценки удалось получить в 86, 57 и 61% случаев в модификациях (2.1, Mw^{SF}), (2.2, Mw^{SB}) и (2.3, Mw^{CB}) соответственно для 890, 589 и 636 землетрясений. Для контроля оценок Mw^{CB} , Mw^{SB} и Mw^{SF} использовали сопоставление с полученными ранее Mw^{RSMT} : для 139/76/97 пересечений $Mw^{SF}/Mw^{SB}/Mw^{CB}$ с Mw^{RSMT} , средние (µ) равны –0.09/–0.02/0.01 со стандартными отклонениями (σ) 0.28/0.22/0.23. При этом отметим, что для оценок Mw^{CB} , полученных в автоматизированной модификации 2.3 (внутрисетевое), стандартное уклонение (σ') для отклонений $M-M_{HCT}$ (станционных оценок M относительно их точного значения) составляет 0.08, что говорит о высокой устойчивости полученных оценок

(например, $\sigma'_{(SB)}=0.18$, $\sigma'_{(SF)}=0.09$). Второй важный результат – снижение нижнего порога Mw, которого удалось достигнуть, реализовав подход (2) в его модификациях (новый порог определения моментных магнитуд для Камчатки – Mw=2.5).

Уточнение связи *Мw–ML*

Большой практический интерес представляло сопоставление оценок Mw с локальной магнитудой ML (рис. 2). Теория и многие эмпирические исследования позволяют ожидать, во-первых, отклонения данной связи от линейности, а во-вторых, в случае линейности или слабой нелинейности, отклонения углового коэффициента полученной прямой связи от 1.0. В изучаемом случае оказалось, что в диапазоне Mw=3-6 вполне приемлемым является простейший вариант связи – линейный с наклоном единица. Полученные связи:

$$Mw=ML-0.40$$
,
 $Mw=0.5(K_{S1,2}^{F68})-1.15$.

Отметим, что экстраполяция предложенной линейной связи в область больших/меньших магнитуд нежелательна, поскольку при выходе за пределы исследуемого диапазона Mw=3-6 обнаружится нелинейность.

СПИСОК ЛИТЕРАТУРЫ

1. *Федотов С.А.* Энергетическая классификация курило-камчатских землетрясений и проблема магнитуд. – М.: Наука, 1972. – 117 с.

2. *Гордеев Е.И., Гусев А.А., Левина В.И., Леонов В.Л., Чебров В.Н.* Мелкофокусные землетрясения п-ова Камчатка // Вулканология и сейсмология. – 2006. – № 3. – С. 28–38.

3. *Kanamori H.* The energy release in great earthquakes // J. Geophys. Res. – 1977. – V. 82, N 20. – P. 2981–2987.

4. *Dziewonski A.M., Chou T.-A., Woodhouse J.H.* Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. – 1981. – V. 86. – P. 2825–2852.

5. *Ekström G., Nettles M., Dziewonski A.M.* The global CMT project 2004–2010: Centroid-moment tensors for 13017 earthquakes // Phys. Earth Planet. Inter. – 2012. – V. 200. – P. 1–9.

6. *Гусев А.А., Шумилина Л.С.* Повторяемость сильных землетрясений Камчатки в шкале моментных магнитуд // Физика Земли. – 2004. – № 3. – С. 34–42.

7. *Гусев А.А., Мельникова В.Н.* Связи между магнитудами – среднемировые и для Камчатки // Вулканология и сейсмология. – 1990. – № 6. – С. 55–63.

8. **Чебров В.Н., Дрознин Д.В., Кугаенко Ю.А., Левина В.И., Сенюков С.Л., Сергеев В.А., Шев**ченко Ю.В., Ящук В.В. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология. – 2013. – № 1. – С. 18–40.

9. *Гусев А.А., Гусева Е.М.* Оценка затухания поперечных волн в среде вблизи ст. «Петропавловск», Камчатка, по спаду спектра // Физика Земли. – 2016. – № 4. – С. 35–51.

10. *Павлов В.М., Абубакиров И.Р.* Алгоритм расчета тензора сейсмического момента сильных землетрясений по региональным широкополосным сейсмограммам объемных волн // Вестник КРАУНЦ. Науки о Земле. – 2012. – № 2 (20). – С. 149–158.

11. *Скоркина А.А., Гусев А.А.* Определение набора характерных частот очаговых спектров для субдукционных землетрясений Авачинского залива (Камчатка) // Геология и геофизика. – 2017. – № 7. – С. 1057–1068.

12. *Rautian T.G., Khalturin V.I.* The use of the coda for determination of the earthquake source spectrum // Bull. Seismol. Soc. Am. – 1978. – V. 68, N 4. – P. 923–948.

13. *Гусева Е.М., Гусев А.А., Оскорбин Л.С.* Пакет программ для цифровой обработки сейсмических записей и его опробование на примере некоторых записей сильных движений // Вулканология и сейсмология. – 1989. – № 5. – С. 35–49.