А. А. Гусев

Новый подход к описанию очаговых спектров землетрясений: численная

модель очага со спектром «омега-квадрат»

1

Предлагается новая «дважды стохастическая» модель очага землетрясения (ДСМОЗ),

чтобы объяснить три обычные свойства очагового излучения: 👞

- (1) форму очаговых спектров (смещения) типа @ ⁻² («омега-квадрат») [Aki 1967; Brune 1970]
 [или, что то же самое, плоские очаговые спектры ускорения [Brune 1970; Hanks&McGuire 1981]]
- (2) очаговые спектры с двумя углами/изломами, типа ω⁰ -ω⁻¹ -ω⁻² (при М≥5-6) [Brune 1970; Gusev 1983]
- (3) частотно-зависимую направленность излучения [Somerville 1997]

 Image: state of the state of t

эти свойства хорошо известны, но для них нет непротиворечивого теоретического объяснения

Типичная запись землетрясения: 8 июня 1993, Ходутка, М7.5, R≈80 км, акселерограмма

видна площадка в спектре ускорения

Эмпирические законы масштабирования (скейлинг) для спектров Фурье ускорения (они близки к кочаговым спектрам ускорения) Видно поведение типа $\omega^0 - \omega^{-1} - \omega^{-2}$: имеются два угла/излома; разрыв между ними растет с магнитудой

Базовая модель очага: по Хаскеллу-Аки-Хитону: Модель очага как бегущей дислокации конечной ширины (Haskell 1964-1966)

Ключевые элементы ДСМОЗ

- 1. Поле локального сброшенного напряжения <u>До(x,y)</u> на площадке очага :
 - случайное, фрактальное
- 2. Локальная структура фронта разрыва при высоких *k* : *случайная, фрактальная, фрагментированная, извилистая*
- 3. Сглаженная/генерализованная структура фронта разрыва при малых *k*:

систематическая, согласно концепции бегущего «импульса подвижки»

 Формирование сейсмических волн: согласно модели разрушения неровности/«asperity» на разломе

Стохастическая/случайная компонента №1 ДСМОЗ – поле локального сброшенного напряжения $\Delta \sigma(x, y)$ [Andrews 1980]

пространственное поведение, не связано с *t*

• $\Delta \sigma(x, y)$ - это случайное 2D поле; задано своим спектром мощности P(k), либо своим средним амплитудным спектром $S(k) \sim P^{0.5}(k)$ [Andrews 1980] $(k=|\mathbf{k}|)$

• S(k) – степенная функция ($S(k) \sim k^{-\beta}$) [диктует автомодельное или фрактальное поведение] [Andrews 1980]; и в частности:

• *β*=1 and *S*(*k*) ~ *k*⁻¹ [автомодельное поведение в узком смысле] [Andrews 1980]

• $\Delta \sigma(x, y)$ жестко связан с полем финальной дислокации/подвижки D(x, y) [со спектром ~ $k^{-\beta - 1}$]

Стохастическая/случайная компонента №2 ДСМОЗ : локальная структура фронта разрыва при высоких *k* [*Gusev* 2012]

определяет эволюцию

разрыва в пространстве-времени

example isolines of $t_{fr}(x, y)$ shading: the later, the lighter

• задает историю разрыва через **«время прихода** фронта» $t_{fr}(x, y)$, причем

• *t_{fr}(x, y)* имеет «кружевной» вид, а именно: (а) изолинии извилисты

(b) фронт фрагментирован,

с «островами» и «озерами»

t_{fr}(x, y) можно представить как суперпозицию
(1) гладкого (малые *k*) «макроскопического»
распространения разрыва с определенной
средней скоростью вспарывания; и
(2) случайного локального (высокие *k*)
«микроскопического» распространения разрыва
в случайных направлениях
(так возникает некогерентность)

Причина некогерентности: случайная локальная ориентировка фронта разрыва Цвет кодирует направление нормали к фронту

12

Компонента №3 ДСМОЗ:

распространение разрыва с импульсом подвижки "slip-pulse" (с выраженным фронтом залечивания) [Heaton 1990]

- детальная история разрыва включает бегущий фронт залечивания
- вводится критический параметр «относительная ширина импульса»

$$C_H = \frac{l}{L}$$

где: *L* длина очага *l* ширина импульса подвижки

ИЛИ

$$C_{H} = \frac{T_{rise}}{L / v_{rup}}$$

где:

 T_{rise} – время нарастания подвижки (rise time);

 v_{rup} - средняя скорость вспарывания

Компонента №4 ДСМОЗ:

Применение модели разрушения неровности/«asperity» на разломе [Das&Kostrov 1983,1986б 1987] для описания формирования сейсмических волн:

Пусть dS – разрушающееся пятно-склейка в позиции (*x*, *y*) на разломе Σ , окруженное областью пренебрежимого сцепления, размер которого бесконечен (*Случай* 1) или конечен, размера $2R_r$ (*Случай* 2). Фронт разрыва приходит к dS в момент t_{fr} .

Рассмотрим решения для волн SH в дальней зоне; для скорости в волне на луче вдоль нормали

Случай 1: $d\dot{u}^{SH,\infty}(\xi, t + R/c_S) = A\Delta\sigma(x, y)\delta(t - t_{fr}(x, y))dS$ бесконечный разлом $\dot{u}^{SH,\infty}(\xi, t + R/c_S) = A\int_{\Sigma}\Delta\sigma(x, y)\delta(t - t_{fr}(x, y))dS$

Канализованные разломом волны (неоднородная S, R) уходят на бесконечность

Случай 2: $d\dot{u}^{SH}(\xi, t + R/c_S) = G(t) * A\Delta\sigma(x, y)\delta(t - t_{fr}(x, y))dS$ конечный разлом $\dot{u}^{SH}(\xi, t + R/c_S) = G(t) * A \int_{\Sigma} \Delta\sigma(x, y)\delta(t - t_{fr}(x, y))dS$ где G(t) имеет нулевой интеграл и длительность порядка $2R_{r}/c_{R}$

Канализованные разломом волны (неоднородная **S, R**) дифрагируют/конвертируются в обычные объемные волны на границе и гаснут

2R

Разрушение неровности/«asperity» на разломе: объемные волны в дальней зоне

Ключевая гипотеза для применимости теории Дас-Кострова:

пятно низкого сцепления (размером 2*R*_r) *можно отождествить*

с куском полосы импульса подвижки (шириной *l*)

так что соответствующие размеры близки друг к другу:

Для каждого элемента фронта разрыва *dS*, имеется свое индивидуальное пятно низкого сцепления

Другие упрощения, принятые при моделировании:

- Сброс напряжения происходит мгновенно по приходе фронта разрыва (зона сцепления очень узка)
- Рассматриваются лишь волны *SH*
- *Т_{гіse}* или *l* мало меняются по площадке очага
- Функцию G(t) (временной ход вклада точки очага в сейсмограмму скорости) можно считать идентичной для всех точек очага ($G(t,x,y) = G_0(t)$)

Шаги моделирования

в скобках - принятые значения параметров

- (**a**) задать прямоугольник-очаг (38 ×19 км,, точку старта и т. п.
- (b) задать управляющие параметры: β (1.0), C_H (0.06), $CV_{\Delta\sigma}$ (0.8), δ (1.4);
- (c) генерировать реализации случайных полей

 $-t_{fr}(x, y)$ и $\Delta \sigma(x, y);$

- (d) рассчитать сейсмограммы в приемнике для случаев бесконечного и конечного очага
- (e) найти нормализованный амплитудный спектр Фурье смещения и соответствующий спектр ускорения

Моделирование: примеры сигналов и спектров

• приемник на луче, нормальном к площадке очага

Моделирование: как форма спектра зависит от относительной ширины импульса подвижки C_H=l/L Average normalized spectra $C_{u} = 0.0075$ спектры с двумя 0 четкими изломами 0.015 при *C_H*≤ 0.05 0.03 log₁₀ u_n(f), примерно "*m*⁻¹" 0.06 классическая форма промежутипа «омега-квадрат» 0.12 точный при С_{*H*}≈0.06-0.10 log₁₀ ü_n(f), наклон -2 Вариант масштабирования параметров: f_{c2} и -3 Ntry=50 уровня ВЧ спектра А_{нг}: $f_{c2}/f_{c1} \approx 0.2/C_H$ $A_{HF}/A_{1HF} \approx 0.063/C_H$ -2 0 $\log_{10} f$, Hz приведены средние по 50 реализациям

Как модельные спектры зависят от направления на приемник (относительно направления вспарывания разрыва): видна частотно-зависимая направленность

Перспектива – моделирование кинематики случайного разрыва с кружевным фронтом с помощью клеточных моделей («автоматов»

Цвет кодирует время от старта

Точки-мгновенный излучатель

Выводы

- 1. Предложенный подход позволяет воспроизвести, путем численного эксперимента, следующие наблюдаемые черты излученных очагом сейсмических волн:
 - ВЧ ветвь спектра типа ω^{-2} ;
 - форму спектров с двумя изломами (двумя корнер-частотами), и
 - частотно-зависимую направленность (высокую на НЧ, низкую на ВЧ)
- 2. Чтобы достичь этого результата, предложена дважды стохастическая модель очага землетрясения, которая объединяет две случайные самоподобные/фрактальные структуры, одну в пространстве, другую в пространстве-времени
- 3. Предложенная модель кинематическая и численная. Она тем не менее достаточно гибкая и может быть приспособлена для практического моделирования сильных движений при землетрясении.

Благодарю За внимание

Two possible ajustments may be needed; **both ignored** in further simplified simulation

- Along-front size of slipping spot above *l*: as there is more free space for alog-fault waves to propagate
- Across-width size of slipping spot below *l*: as the healing front does not stand and approaches at comparable velocity

