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The ”Double Stochastic Fault Model” (DSFM) is proposed
in order  to explain 3 common properties of earthquakes:

• (1) -2 [“omega-square”] shapes of (displacement) 
source spectra                             [Aki 1967; Brune 1970] 

[or, equivalently, flat acceleration source spectra
[Brune 1970; Hanks&McGuire 1981]]

• (2) two-corner (0 –-1 –-2) source spectra
(typical for larger magnitudes)         [Brune 1970;Gusev 1983]

• (3) frequency-dependent directivity 
[e.g. Somerville 1999]

these three properties are well-known, 

all three lack consistent theoretical explanation
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Empirical scaling laws for Fourier acceleration spectra, with flat HF part
they approximate source acceleration spectral shapes shapes

note clear two-corner spectral shapes 
with gap between corners increasing with magnitude

↓ attenuation-

related
f-max

W.USA model

Atkinson 1993

Trifunac 1994
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Period/frequency dependence of the average directivity factor
of response-spectrum acceleration RSA (RSA ≈ peak of narrow-band-filtered acceleration) 

for a set of angles between forward direction of propagation and the ray to receiver 

T= sec

f=   100                           10                           1 0.1 Hz

forward

backward

Xcos(theta):

X measures degree of
unilaterality

(0 for bilateral)

theta is anglular deviation
from

forward direction (0 to 180)

Somerville et al 1997, SRL
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Key components of DSFM

• 1. Final (local) stress drop field (x,y) on a fault : 
random, fractal [Andrews 1980]

• 2. Rupture-front structure at high k, locally: 
random, fractal, disjointed, tortuous       [Gusev 2012];

• 3. Rupture-front propagation mode at low k, [smoothed picture]:
systematic, following the concept of  running slip pulse

[Heaton 1990; Haskell 1964,1966]

• 4. Formation of seismic waves: 
according to the fault asperity failure model

[Das&Kostrov 1983,1986; Boatwright 1988]
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The stochastic/random component #1 of the DSFM (time-independent) :

local stress drop  (x, y) field  [Andrews 1980]

 (x, y) is a random (assumedly isotropic) 2D 
field, defined through its power spectrum P(k), or 

through mean amplitude spectrum S(k)  P0.5(k) 

[Andrews 1980]     (k=|k|)

• S(k) is power law (S(k) k ) [self-affine, or 
broad-sense self-similar or fractal behavior] 

[Andrews 1980]; and in particular:

• =1 and S(k)  k [narrow-sense self-similar 
behavior] [Andrews 1980] 

•  (x, y) is rigidly tied to final dislocation/slip 

field D(x, y) [with spectrum k ]
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The stochastic component #2 of the DSFM (defines space-time evolution):

local rupture-front structure at high k [Gusev 2012]

• defines time history of rupture through 
rupture front arrival time

tfr(x, y)

• tfr(x, y) has  “lacy” general appearance, with:
(a) tortuous or wiggling isolines 
(b) fragmented, with “islands” and “lakes”

• tfr(x, y) can be  represented as superposition of 

(1) smooth [low-k] global/“macroscopic” rupture 
propagation, with well-defined rupture velocity 
(traditional element); and 

(2) random high-k local/“microscopic” rupture 
propagation at random directions (novel element; 
creates incoherence)

hypo-

center

example isolines of tfr(x, y)

shading: the later, the lighter



local rupture-front structure at high k (cont. 1)

tfr(x, y): original, tfr(x, y): smoothed, 

profile: yellow line:
t(x) non-monotonous
x(t) multiple-valued

profile: yellow line:
t(x) monotonous
x(t) single-valued

Creating tfr (x,y)

tfr (x, y) =R (x, y) + S (x, y)

R (x, y): random self-similar, spectrum 1/k ; =1-1.5; 

S (x, y): smooth; deterministic term with constant velocity + 

perturbation
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low-k part

only 
isolines 

continuous

full 

k-spectrum

isolines 
fragmented



The cause of incoherence is manifested in local rupture front orientation
Color code: local direction of rupture-front normal

incoherent case (used in simulation) coherent case (not used, example only)

local rupture-front structure at high k (cont. 2)
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Component #3 of the DSFM (non-stochastic):

”slip-pulse” rupture propagation, with healing front [Heaton 1990]

• detailing time history of rupture

through healing front evolution

• introducing critical parameter
“relative pulse width”

where:   L is fault length;    
l is slip pulse width

in other terms

where: 
Trise is rise time; 
vrup is (mean) rupture velocity;

rup

rise
H

vL

T
С

/


L
lСH 

typical values of CH :   

around  0.1 [Heaton 1990]
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Component #4 of the DSFM:  Using fault asperity failure theory
[Das&Kostrov 1983,1986; Boatwright1988] to describe body wave 

generation

Case 1: infinite fault

Fault-guided waves (P, inhomogeneous S and R) go to infinity

Case 2: finite fault

with specific G(t)=G(t,x,y), of zero integral and of duration on the 

order 2Rr/cR  

Fault-guided waves (P,S and R) diffract/transform  to regular body waves 
at the boundary and die off

Consider failing fault spot dS at position (x, y) on a fault  surrounded by a region of negligible cohesion:  

infinite (Case 1) or finite, size 2Rr (Case 2). Rupture front arrives to dS at time tfr.

For far-field SH body wave, consider velocity time history on along-normal ray: )/,( S
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Fault asperity failure theory, continued: far field body waves

Case 1: infinite fault with asperity dS

infinite seismic moment

Case 1: finite fault with asperity dS

seismic moment is on the order

dMo = 2Rr dF

where dF is seismic force

dF=(x, y) dS

d
isp

lacem
en

t      velo
city

d
isp

lacem
en

t      velo
city

Note that abruptness of pulse front causes 
formation of accurately -1 factor to source 
spectrum 

2Rr
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Key assumption
is made here

to justify the application 
of Das-Kostrov theory:

a low-cohesion spot (of size 2Rr ) 
can be associated  

with a piece of slip-pulse strip
(of width l)

and corresponding sizes
are close one to another:

2Rr ≈ l
For each rupture front element dS,

there is an individual, corresponding low 
cohesion/slipping patch



Two possible ajustments may be needed; both ignored in 
further simplified simulation

• Along-front size of slipping spot above l: 
as there is more free space for alog-fault waves to propagate 

• Across-width size of slipping spot below l: 
as the healing front does not stand and approaches at comparable velocity
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More simplifications adopted in simulation:

• Stress drops instantly at the arrival of rupture 
front (slip-weakening distance / cohesion length: very small)

• Only SH waves are considered

• Trise or l vary only weakly over fault area

• Function G(t,x,y) is identical for all fault spots 
( G(t,x,y) = G0(t) )

G0(t) )

Trise



6/27/2018 Luxemburg 2012 EQ Source 16

Simulation stages
the accepted parameter values in parentheses

• (a) select source rectangle (38 19 km), 
nucleation point etc

• (b) set control parameters:
 (1.0), CH (0.06), CV (0.8),  (1.4); 

• (c) generate sample random fields
tfr (x, y) and  (x, y);

• (d) calculate time functions at a receiver for
the cases of infinite and finite fault 

• (e) determine 
normalized displacement spectrum  
and associated acceleration spectrum 

.
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Simulation: example signals and spectra

←ten spectra,
averaged

• Receiver position is assumed to be 
positioned at the along-normal ray
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}
}

Simulation: how spectral shapes depend on CH=l/L

shown: averages over 50 runs

clear 2-corner shapes 

at CH  0.05

apprx. classical 
“omega-square” at 
CH ≈0.06-0.10

“”
intermediate 

slope
Example scaling:

of fc2 and

of HF spectral level AHF:

fc2 /fc1 ≈ 0.2/CH

AHF/A1HF ≈ 0.063/CH

Receiver position 
is assumed at 
along-normal ray
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“” part:

expressed 
directivity

}
“” part :

decaying 
directivity

}

fc2

independent of 
direction

fc1

varies with

direction
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Simulation: spectral shapes depending on receiver position w.r.t. mean 
rupture propagation direction; note frequency-dependent directivity

forward

back-

ward

Observed, M=6-7 
Somerville et al 1997, SRL

90 deg

vrup /cS =0.85

M ≈ 6.7-6.9
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Conclusions

• 1. The proposed approach permits to reproduce, through 
numerical modeling, the following observed features of radiated 
earthquake waves: 

- -2 HF spectral slope; 
- 2-corner spectral shapes, and 
- frequency-dependent directivity (high at LF, low at HF)

• 2. To achieve this result, “double stochastic fault model” is 
proposed, that incorporates two self-similar/fractal structures, 
one in spatial domain, and another in space-time domain

• 3. The presented model is kinematic and numerical. It is 
however versatile and can be adapted for practical strong 
motion simulation


