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The ”Double Stochastic Fault Model” (DSFM) is proposed
in order to explain 3 common properties of earthquakes:

e (1) @?* [“omega-square”] shapes of (displacement)
source spectra [Ak1 1967; Brune 1970] D

[or, equivalently, flat acceleration source spectra
[Brune 1970; Hanks&McGuire 1981]] A

* (2) two-corner (@° —w ' —w ) source spectra f.
(typical for larger magnitudes) [Brune 1970;Gusev 1983]

 (3) frequency-dependent directivity
[e.g. Somerville 1999]

A
these three properties are well-known, 1 I
all three lack consistent theoretical explanation fc1 fcz
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log A (mm/s)

Empirical scaling laws for Fourier acceleration spectra, with flat HF part
they approximate source acceleration spectral shapes shapes
note clear two-corner spectral shapes
with gap between corners increasing with magnitude
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Period/frequency dependence of the average directivity factor

of response-spectrum acceleration RSA (RSA = peak of narrow-band-filtered acceleration)
for a set of angles between forward direction of propagation and the ray to receiver
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Key components of DSFM

1. Final (local) stress drop field Ao(x,y) on a fault :
random, fractal [Andrews 1980]

2. Rupture-front structure at high &, locally:
random, fractal, disjointed, tortuous [Gusev 2012];

3. Rupture-front propagation mode at low &, [smoothed picture]:
systematic, following the concept of running slip pulse

[Heaton 1990; Haskell 1964,1966]

4. Formation of seismic waves:
according to the fault asperity failure model
[Das&Kostrov 1983,1986; Boatwright 1988]
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The stochastic/random component #1 of the DSFM (time-independent) :
local stress drop Ao (x, y) field [Andrews 1980]

Ao (x, y) 1s a random (assumedly 1sotropic) 2D
field, defined through its power spectrum P(k), or

through mean amplitude spectrum S(k) oc P*>(k)
[Andrews 1980] (k=[k|)

* S(k) is power law (S(k) ock™P) [self-affine, or
broad-sense self-similar or fractal behavior]
[Andrews 1980]; and in particular:

* /=1 and S(k) oc k! [narrow-sense self-similar
behavior] [Andrews 1980]

» Ao (x, y) is rigidly tied to final dislocation/slip
field D(x, y) [with spectrum ock 1]
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The stochastic component #2 of the DSFM (defines space-time evolution):
local rupture-front structure at high £ [Gusev 2012]

hypo-
centerm

example isolines of t.(x, y)

shading: the later, the lighter
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* defines time history of rupture through
rupture front arrival time

t“fr(x’ y )

* 1,(x, y) has “lacy” general appearance, with:
(a) tortuous or wiggling isolines
(b) fragmented, with “islands™ and “lakes”

* 1,(x, y) can be represented as superposition of

(1) smooth [low-k] global/*“macroscopic’ rupture
propagation, with well-defined rupture velocity
(traditional element); and

(2) random high-k local/*“microscopic’ rupture
propagation at random directions (novel element,
creates incoherence)
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local rupture-iront structure at nigh £ (cont. 1)

t;(x, y): original, t;(x, y): smoothed,
full 1 low-k part
k-spectrum only
isolines isolines
fragmented /(/b continuous

profile: yellow line:
f(x) non-monotonous
x(t) multiple-valued

profile: yellow line:
{(x) monotonous
[ x(t) single-valued

X, counts X, counts

Creating #;, (x,y)
L (%) =R (x, ) +S (x, )
R (x, y): random self-similar, spectrum oc1/k?; 6=1-1.5;

S (x, y): smooth; deterministic term with constant velocity +
perturbation
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local rupture-front structure at high £ (cont. 2)

The cause of incoherence 1s manifested in local rupture front orientation
Color code: local direction of rupture-front normal

incoherent case (used in simulation)
i r R
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Component #3 of the DSFM (non-stochastic):
’slip-pulse” rupture propagation, with healing front [Heaton 1990]

is slipping now * detailing time history of rupture

unbroken, locked - = broken, locked . ,
A through healing front evolution

Y
TS * introducing critical parameter

: “relative pulse width”

C,=1,

where: L is fault length;
?D\ [ 1s slip pulse width
>

rupture front ® 1 healing front
rise

C, = rie
L rup
< » where:

1n other terms

T, 1s rise time,

typical values of Cy, : Y, 18 (In€an) rupture velocity;
around 0.1 [Heaton 1990]
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Component #4 of the DSFM: Using fault asperity failure theory
[Das&Kostrov 1983,1986; Boatwright1988] to describe body wave
generation

Consider failing fault spot dS at position (x, y) on a fault £ surrounded by a region of negligible cohesion:
infinite (Case 1) or finite, size 2R, (Case 2). Rupture front arrives to dS at time ¢,.

For far-field SH body wave, consider velocity time history on along-normal ray: ;> (& f+ R/ cq)

Case 1: infinite fault @™ (&,t+R/cg) = AAo(x,y)8(t—1,(x, ))dS
i (E,t+ R/ c)=A L Ao (x,y)5(t 1 ,(x,))dS

™~ Fault-guided waves (P, inhomogeneous 8 and R) go to infinity
Case 2 finite fault di”" (E,t+R/cy)=G(t)* AN (x, y)(t —1,(x,»))dS
i (Et+R/cg)=G(0)* 4 LAG(x, V)5t —1,(x,¥))dS

with specific G(¢)=G(¢,x,y), of zero integral and of duration on the
order 2R /c,

Fault-guided waves (P,S and R) diffract/transform to regular body waves
at the boundary and die off
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Fault asperity failure theory, continued: far field body waves

g Case 1: infinite fault with asperity dS
: infinite seismic moment

o Case 1: finite fault with asperity dS
g’f _N seismic moment 1s on the order

2 dMo = 2R _dF

s where dF 1s seismic force

g dF=Ao(x, y) dS

Note that abruptness of pulse front causes
formation of accurately @’ factor to source
spectrum
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Key assumption
is made here
to justify the application
of Das-Kostrov theory:
a low-cohesion spot (of size 2R )

can be associated

with a piece of slip-pulse strip
(of width /)

and corresponding sizes
are close one to another:

2R, =1
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is slipping now

unbroken, locked

broken, locked

rupture front *

<—>

_ /
) L=2R,

ﬁhealing front

For each rupture front element ds,

there is an individual, corresponding low

cohesion/slipping patch
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Two possible ajustments may be needed; both ignored in
further simplified simulation

« Along-front size of slipping spot above /:
as there is more free space for alog-fault waves to propagate

* Across-width size of slipping spot below /:
as the healing front does not stand and approaches at comparable velocity
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More simplifications adopted 1in sitmulation:

* Stress drops instantly at the arrival of rupture A

front (slip-weakening distance / cohesion length: very small) \
: Go(0))
* Only SH waves are considered ’

« T.  orlvary only weakly over fault area T,

rise

-
Y

* Function G(#,x,y) 1s identical for all fault spots
(G(tx.y) = Gy(9))
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Simulation stages

the accepted parameter values in parentheses

* (a) select source rectangle (38 x19 km),
nucleation point etc

* (b) set control parameters:
S (1.0), Cp, (0.06), CV,_(0.8), 6(1.4);

* (¢) generate sample random fields

: :... K—__ tfr (X, y) and Aa(x) y)’
L | >

* (d) calculate time functions at a receiver for
the cases of infinite and finite fault

* (e) determine
normalized displacement spectrum
and associated acceleration spectrum
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Simulation: example signals and spectra

............................

«—len spectra,
averaged

— =— 2 DisplSp
» Receiver position is assumed to be 3 AccSp-av
positioned at the along-normal ray i -1
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Simulation: how spectral shapes depend on C,=l/L

Average normalized spectra
1 1 1 |

Receiver position : . . : :
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clear 2-corner shapes
at C,;<0.05

apprx. classical
“omega-square” at
C,=0.06-0.10

Example scaling:
of f, and
of HF spectral level A, :

frlfy 20.2/C,y
A, A, ~0.063/C,

s




Simulation: spectral shapes depending on receiver position w.r.t. mean
rupture propagation direction; note frequency-dependent directivity

_ 0
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Conclusions

1. The proposed approach permits to reproduce, through
numerical modeling, the following observed features of radiated
earthquake waves:

- o2 HF spectral slope;

- 2-corner spectral shapes, and

- frequency-dependent directivity (high at LF, low at HF)

2. To achieve this result, “double stochastic fault model” is
proposed, that incorporates two self-similar/fractal structures,
one in spatial domain, and another in space-time domain

3. The presented model is kinematic and numerical. It is
however versatile and can be adapted for practical strong
motion simulation
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