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Principles 
for analysis of scaling

(1) Analysis of scaling is a powerful approach in physics, 
capable to clarify behavior of 
-weakly accessible objects or 
- ones with less clear physics or 
- ones with incomprehensible mathematics. 
(Examples: hydrodynamics, explosion, turbulence,biology)

(2) One have to select key dimensional parameters, and 
study their interrelationships, often of power law kind

(3) A specific instrument is extraction of 
dimensionless parameters 
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Principles 
for analysis of scaling (2)

In simple cases, scaling analysis assumes that no intrinsic 
dimensional (spatial, temporal, etc) scale exist within the 
problem under study. In other words, the background space-
time is homogeneous/uniform 

When a relevant dimensional parameter appears, scaling 
analysis often reveals this; then power law is violated and 
critical size shows itself in a scaling diagram as an anomaly. 
Spectral peak in a specrtum the power-law behavior is a standard example.
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Similarity vs. scaling

Similarity: simple scaling when 
dimensional analysis works;
example: fundamental acoustic 
frequency of a hollow bodyof a fixed 
shape, f0 vs. its volume V:

f0  V-1/3

Non-trivial scaling: 
(voice characteristic frequency) 
(body mass)-0.64

(not 1/3 as might be expected)

similarity is absent!!!
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Key dimensional parameters for earthquake source/fault
A. Geometry

Area: S=L·W L2

Potency or dislocation moment: DS=DLW  L3

Seismic moment: M0 = DS=DLW  L3

Effective fault radius R=(S/)0.5  L
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M=

Key dimensional parameters
B. Kinematics

Magnutudes:

10M=A
M0/T=
LWD/T=
 L3 / L1 L2

 M0
2/3
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(Ideal case only)

Slip pulse width: l

Local slip formation

time:  Trise=Tr

Local slip velocity

vslip=D/Trise

Key dimensional parameters
B. Local slip/dislocation formation
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List of dimensionless or effectively dimensionless parameters 
and their typical values

for natural tectonic earthquakes 
(averge values over fault area)
[dropped coefficients on the order of 1]

Strain drop  D/W 10-4-10-5

Stress drop  D/W 0.5-5 MPa [5-50 bar]

Stress drop  M0/R
3 0.5-5 MPa [5-50 bar]

Aspect ratio AR=L/W 1.5-3.5…..20

Mach number  Mach=vrup/cS; 0.5-0.9
cS≡: S wave velocity

Relative width of slip pulse CH = l/L (=Trise/T) 0.10
(=relative local rise time)

Local stress drop D/l 5-50MPa [100-1000 bar]

Fault wall relative velocity, or

dislocation rate D/Trise 100 cm/s
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Some scaling or, really, similarity: 

Similarity with respect to strain of stress drop ( can be seen in data as empirical 
trends that follow predictions of dimensional analysis; or as scale-independence of 
empirical estimates of 

In case of similarity  must be constant

[Conceptually,  =const might follow from the assumption of scale independence of ultimate strength (or, merely, 
strength) of Earth material. However, the concept of ultimate strength is not quite clear in itself and to a large 
degree outdated.

Alternative concepts, like scale-dependent fracture toughness, have been tested, but no final consensus attained.] 

Stability of  is imperfect

Observed systematic variations of stress drop/strain drop:

(1) Depth dependence (the deeper, the stronger)

(2) Distance from main plate boundary (the farther, the stronger)

(3) Return period of rupture on a particular fault segment (the rarer, the 
stronger)

Magnitude dependence of  is a matter of acute controversy:

1st party:  =const at any M

2nd party:  grows with magnitude from M=1 to M=5-6; and stable at M=6+
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Some scaling or, really, similarity: Mach

Similarity with respect to Mach=vrup/cS =L/T: 
In case of similarity Mach must be constant

no significant deviation of fault-average (“global”) Mach from 
typical values Mach=0.7±0.2 was noticed.

However, very significant local variations of Mach, 
with many examples of “supershear” rupture with Mach>1
over large sections of entire fault, has been discovered, 
mostly in the last 15 years.
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Some scaling or, really, similarity: AR

Similarity/scaling with respect to AR=L/W : 

(1) Two classes of sources with different trends:
- “short” faults with AR=1-4, mostly dip-slip ones (“s”)
Examples: Tohoku 2011(subduction),   Northrige 1994 (crustal), 

- “long” faults with AR>4, up to 20; mostly crustal strike-slip ones.(“l”)
Examples: San-Francisco 1906 (crustal),  Sumatra 2004 (subduction) 

(2) Within each class, clear magnitude dependence:
Low AR1-1.5 for M=4-5; increase to big values like 3-4 for “s” class and like 20 for “l”

class

=============Probable explanation of 2 classes . ========================
External non-uniformity spoils scaling. Division into classes is created by various brittle zone size along 

rupture propagation direction ( vrup vector).

Crustal event case, brittle zone width 10-20 km:  
L is typically less that 15-18 km for dip-slip; W is up to L, AR around 1-2
L is not limited for strike-slip, W is limited as 15-18 km ; AR up to 20

Subduction event case , brittle zone size 50-200 km, mostly dip-slip 
L is not limited, W is limited by 50-200; AR rarely above 4, sometimes up to 10-15
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Some scaling or, really, similarity: AR (2)

(1) Two classes of sources with different trends:
- “short” faults with AR=1-4, mostly dip-slip ones (“s”)
Examples: Tohoku 2011, Northrige 1994
- “long” faults with AR>4, up to 20; mostly crustal strike-slip ones.(“l”)
Examples: Sumatra 2004, San-Francisco 1906

(2) Within each class, clear magnitude dependence:
Low AR1-1.5 for M=4-5; increase to big values like 3-4 for “s” class and like 20 for “l”

class

============= Probable explanation for magnitude dependence: same  ==================

The larger is magnitude, the larger is fault area and the more are chances that it will become elongated 
to fit into the brittle zone of limited width. 
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Case of no similarity in scaling : CH = l/L

Similarity/scaling with respect to relative width of slip pulse (=relative local rise 
time).

CH = l/L=Trise/T

In case of similarity CH must be constant 

Weakly studied field!. For l, very limited amount of direct measurements.
To a large degree, CH reproduces the  parameter – the degree of “partial stress 

drop” - proposed by Brune (1970)

Gusev 2013 proposed that one can estimate Trise from the second corner 
frequency as seen on the source spectrum; this point to be discussed in 
detail further.

If this works, empirical data suggest that CH is clearly non-constant; similarity 
breaks:

Trise seems to scale approximately as T0.5 ; and therefore CH as T-0.5 or M0
-1/6
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Supposed scaling or similarity: 
relation between global  and rms stress drop (= HF “stress 

parameter”HF)

By many authors, the difference was noted between stress drop estimates

(1) from fault parameter inversion
(it gives “global” , order of 15 bar); and 

(2) From HF strong motion amplitudes [peak and rms accelerations etc], using 
acceleration spectrum; (this gives “stress parameter” HF, order of 100 bar)

To the first approximation, their ratio is stable 

To the second approximation, two teams: Atkinson et al [1997-2006] and Halldorsson&Papageorgiou

[2005 etc] noted clear magnitude dependence of HF:

from M=5 to M=8, HF decreases from150 to 30 bar, at stable 

Weakly studied field.
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Supporting evidence

Blazer et al.2010
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Supporting evidence

M0(Vallee 2013)

Duration,
T

(Dupitel et al.2013)

Time centroid delay

M0

(Iwate&Asano 2011)

S
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The “1.0”
line
corresponds
to 3.7 bar
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Supporting evidence
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(Wells&Coppersmith1994)
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Part 2: spectra
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“-2 “ or “omega-square” spectral model 

of far-field earthquake source radiation,  
after Aki 1967 and Brune 1970 

([Brune 1970] in the standard version of =1)

Features:
1. u(f=0) M0

2. Single corner at fc1/T
3. -2 or f-2 HF branch of u(f); thus, flat a(f) spectrum

Single
far-field
displacement u(f)
spectrum



Trst 2014 20

Scaling Law of Seismic 
Spectrum (Aki 1967)

The family of 
far-field
displacement
spectra 

u(f|M0)

Assuming similarity

fcM0
1/3
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Brune 1970 version of “omega-square” spectral model and its 
later practical implementation

• fault description deterministic, not stochastic after Aki 1967

• explicit formulas relate M0, fc,  and R

• in case of more complicated spectral shapes:
(1) “empirical-asymptotic” HF branch is permitted to have slope in the 1.0-
2.5 range; and / or 
(2) complications around the corner are ignored, and “intersection of 
asymptotes” is taken as the corner frequency

This picture from Savage 1972 was not a 
recommendation, only statement of a problem. 
However, many spectral studies actually used it in 
this way, taking “3” as the empirical corner 
position

This is the probable reason why spectral and 
inversion estimates of Ds often do not match 
(typically 30 bar against 5-15 bar)
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On the nature of spectral corners in deterministic source models.
Why stochastic fault model is a must?

This picture from Savage 1972 illustrates 
how discontinuities in the displacement 
waveform, (or source time function, STF) are 
related to emergence of spectral corners. 

The preferred waveform with angular point 
and thus with “-2” spectrum, after passing to 
acceleration, produces delta-like 
acceleration spike (red trace, my), nothing 
common with realistic noise-like 
accelerogram. 

The standard textbook STF of trapezoidal 
shape produces precisely four spikes. 
Therefore, deterministic models give no 
hope in creating realistic broadband source 
model. Stochastic models can help.
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First attempts for more realistic spectral families:

strict similarity is rejected

Key feature of the 
new generation of 
spectral models is 
the lack of 
similarity that was 
needed to 
describe real 
earthquke data

New spectra remind 
Aki1967 spectra at 
M=5,

And show two-corner 
or even two-hump 
shape at M=8

(Gusev 1979) (Takemura&Koyama1982)

fc1

fc2
fc1

fc2
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More advanced spectral families with no similarity

Shown are “acceleration source” spectra, those reflecting acceleration source time function.

Decay of these spectra at HF part are related to the assumption of “source-controlled f-max” .

Its role was greatly overestimated at that moment; still it can often be recovered from data, 
and this assumption reflects reality.  

(Gusev 1983)
(Papageorgiou$Aki 1983,1985)

fc1 fc1

fc2 fc2
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Empirical spectral scaling laws of
accelerogram spectra 

approximating source acceleration shapes

↓ attenuation-

related
f-max

W.USA model

Atkinson 1991 Trifunac 1994

fc1
fc1

fc2 fc2
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Empirical spectral scaling laws 
(Halldorsson&Papageorgiou 2005)

(Halldorsson&Papageorgiou 
2005)

fc2 is definitively present

but is scales as  fc1

fc1

fc2
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Version of Gusev 2007 (unpublished)
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Compilation of fc2(Mw) scaling:

fc2  100.25-0.30Mw  M0
0.17-0.2  fc1

0.5-0.6
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Advanced spectral family with realistic fc2 trend: G11D (Gusev 2011)

Denoted:
_________ G11D

-- - - Brune1970 15 Bar

_._._._._  Brune 1970 87 Bar

Check using Ms(Mw) empirical trend
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FIN
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Скейлинг очаговых спектров (ускорения)

Подобие (Аки1967) Нарушение подобия (Гусев 1983)

fc1

fc1

fc2
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Нарушение подобия для второй корнер частоты очагового
спектра землетрясений Камчатки

fc1 ~M0
-1/3 fc2 ~M0

-1/6
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Нарушение подобия для третьей корнер частоты очагового
спектра

fc1 ~M0
-1/3 fc3 ~M0

-1/12
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Подобие
и скейлинг

примитивная идея: 
размер резонатора~ мacca1/3

частота основного тона голоса
в функции массы тела
степенной закон, 
показатель:  -0.64,  отличен от -1/3


