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Principles 
for analysis of scaling

(1) Analysis of scaling is a powerful approach in physics, 
capable to clarify behavior of weakly accessible objects 

or ones with less clear physics or incomprehensible 

mathematics. (Examples: hydrodynamics, explosion, 
turbulence)

(2) One have to select key dimensional parameters, and 
study their interrelationships, often of power law kind

(3) A specific instrument is extraction of dimensionless 
parameters 
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Подобие и скейлинг

до Галилея: подобие:

(масса скелета)~(масса тела)1

????

после Галилея: скейлинг есть;

но подобие нарушено:

(масса скелета)~(масса тела)1+х

скейлинг есть;

но подобие нарушено:

(масса мозга)~(масса тела)1-х

before Galileo: similarity

(skeleton mass)∝(body mass)1

????

after Galileo: scaling is present but similarity is absent:

(skeleton mass)∝(body mass)1+х

scaling is present but similarity is absent:

(brain mass)∝(body mass)1-х
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Автомодельный рост – подобие стадий

роста

нередко - удобное приближение

но его применимость в реальной задаче

может быть спорной; 

в сложной системе

автомодельности нет

no self-similarity in a 

complex system

Self-similar growth – similarity og stages of 

growth; often – a good approximation

but its applicability need check in practical 

situation

Slip=f(distance)
self-similar 

growth of shear 

crack after Kostrov

as a model for 

formation of an 

earthquake source
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Key dimensional parameters
A. Geometry

Area: S=L·W∝ L2

Potency or dislocation moment: DS=DLW ∝ L3

Seismic moment: M0 = µDS=µDLW ∝ L3

Effective fault radius R=(S/π)0.5
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M=

Key dimensional parameters
B. Kinematics

Magnutudes:

10M=A∝
M0/T≈

µLWD/T=

∝LD∝L2

∝M0
2/3
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(Ideal case only)

Slip pulse width: l\

Local slip formation

time:  Trise=Tr

Local slip velocity

vslip=D/Trise

Key dimensional parameters
B. Local slip/dislocation formation
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List of dimensionless or effectively dimensionless parameters 
and their typical values

for natural tectonic earthquakes 
(average values over fault area)

[dropped coefficients on the order of 1]

Strain drop ∆ε ∆ε ∆ε ∆ε ≈≈≈≈ D/W 10-4-10-5

Stress drop ∆σ ∆σ ∆σ ∆σ ≈≈≈≈ µD/W 0.5-5 MPa [5-50 bar]

Stress drop ∆σ ∆σ ∆σ ∆σ ≈≈≈≈ M0/R
3 0.5-5 MPa [5-50 bar]

Aspect ratio AR=L/W 1.5-3.5…..20

Mach number  Mach=vrup/cS; 0.5-0.9global    [up to 1.3 local]

cS≡β: S wave velocity
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List of dimensionless or effectively dimensionless parameters 
and their typical values for natural tectonic earthquakes (2)

Relative width of slip pulse     CH = l/L 0.1

(=relative local rise timeTrise/T)

Local/dynamic stress drop µD/l 30MPa [300 bar]

Local slip rate D/Trise 100 cm/s

Apparent stress drop µEseismic/M0 0.5-5 MPa [5-50bar]

----------------------- less usual parameters --------------------------------

Coefficient of variation (D0.5(·)/E(·))

of local stress drop field CV(D(x,y)) 1.0

Number of “asperities” Na 3

Slip maps D(x,y) obtained using various assumed wavenumber spectra, 

with various degrees of expression of “asperities”;        the preferred case:
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scaling / similarity: ∆σ∆σ∆σ∆σ

Similarity with respect to strain of stress drop (∆σ)∆σ)∆σ)∆σ) can be seen in data as empirical 
trends that follow predictions of dimensional analysis; or as scale-independence of 

empirical estimates of ∆σ∆σ∆σ∆σ

In case of similarity ∆σ∆σ∆σ∆σ must be constant
[Conceptually, ∆σ∆σ∆σ∆σ =const might follow from the assumption of scale independence of 

ultimate strength (or, merely, strength) of Earth material. However, the concept of 

ultimate strength is not quite clear in itself and to a large degree outdated.

Alternative concepts, like scale-dependent fracture toughness, have been tested, but 

no final consensus attained.] 

Observed systematic stress drop/strain drop variations:

(1) Depth dependence (the deeper, the stronger)

(2) Distance from main plate boundary (the farther, the stronger)

(3) Return period of rupture on a particular fault segment (the rarer, the 

stronger)

Magnitude dependence of ∆σ∆σ∆σ∆σ is a matter of acute controversy:

1st team: ∆σ∆σ∆σ∆σ =const at any M

2nd team: ∆σ∆σ∆σ∆σ =grows with magnitude from M=1 to M=5-6; 

and stable at M=6+

Consensus not seen
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scaling / similarity: Mach

Similarity with respect to Mach=vrup/cS =L/T: 

In case of similarity Mach must be constant

no significant deviation of fault-average (“global”) Mach from 

typical values Mach=0.7±0.2 was noticed.

However, very significant local variations of Mach, 

with many examples of “supershear” rupture with Mach>1

over large sections of entire fault, has been discovered, 
mostly in the last 15 years.
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Some scaling or, really, similarity: AR

Similarity/scaling with respect to AR=L/W : 

(1) Two classes of sources with different trends:

- “short” faults with AR=1-4, mostly dip-slip ones (“s”)
Examples: Tohoku 2011(subduction),   Northrige 1994 (crustal), 

- “long” faults with AR>4, up to 20; mostly crustal strike-slip 
ones.(“l”)

Examples: San-Francisco 1906 (crustal),  Sumatra 2004 (subduction) 

(2) Within each class, clear magnitude dependence:

Low AR≈1-1.5 for M=4-5; increase to big values like 3-4 for “s” class and 
like 20 for “l” class
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scaling / similarity: AR (2)

============= Probable explanation for magnitude dependence: ============

The larger is magnitude, the larger is fault area and the more are chances that it will be 

elongated to fit in the brittle zone of limited width.

=============Probable explanation of 2 classes . ========================

External non-uniformity spoils scaling. Division into classes is created by various brittle 

zone size along rupture propagation direction ( vrup vector).

Crustal event case, brittle zone width 10-20 km, defines max W; 

dip-slip:  L is limited /segmentation;             AR around 1-3    

strike-slip:  L is not limited,                               AR up to 20

Subduction event case mostly dip-slip , brittle zone width 50-200 km, defines max W

L is not limited,   W is limited by 50-200;   AR rarely above 4, sometimes up to 10-15
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Probable case of lack of similarity in scaling : CH = l/L

Similarity/scaling with respect to relative width of slip pulse (=relative local rise 

time).

CH = l/L=Trise/T

In case of similarity CH must be constant 

Weakly studied field. For l, very limited amount of direct measurements.

To a large degree, CH reproduces the ε parameter – the degree of “partial stress 
drop” - proposed by Brune (1970)

Gusev 2013 proposed that one can estimate Trise from the second corner 

frequency as seen on the source spectrum; this point to be described in detail 

further.

If this works, empirical data suggest that CH is clearly non-constant; similarity 

breaks:

Trise seems to scale approximately as T0.5 ; and therefore CH as T-0.5 or M0
-1/6
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Supporting evidence

Blazer et al.2010

W 

L

M0

D

L

Mw
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Supporting evidence

M0(Vallee 2013)

Duration,
T

(Dupitel et al.2013)

Time centroid delay

M0

(Iwate&Asano 2011)

S

M0

The “1.0”

line

corresponds

to 3.7 bar
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Supporting evidence

D

(Wells&Coppersmith1994)

S

Mw

(Wells&Coppersmith1994)

S

Mw

L
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ЧАСТЬ 2: СПЕКТРЫ

Подобие и скейлинг для характерной частоты

Scaling and similarity for characteristic frequency

ffund~L-1

~MASS-1/3

Подобие

Similarity

ffund~
MASS-0.4

Скейлинг есть;
но подобие нарушено

Scaling is present; no similarity
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“ωωωω-2 “ or “omega-square” spectral model 

of far-field earthquake source radiation,  
after Aki 1967 and Brune 1970: scaling with similarity

([Brune 1970] in the standard version of ε=1)

Features:

1. u(f=0)∝ M0

2. Single corner at fc≈1/T

3. ωωωω-2 or f-2 HF branch of u(f); thus, flat a(f) spectrum

Single
far-field

displacement u(f)
spectrum
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Scaling Law of Seismic 
Spectrum (Aki 1967)

The family of 

far-field
displacement

spectra 

u(f|M0)

Assuming similarity

fc∝M0
1/3
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Brune 1970 version of “omega-square” spectral model and its 
later practical implementation

• fault description deterministic, not stochastic after Aki 1967

• explicit formulas relate M0, fc, ∆σ and R

• in case of more complicated spectral shapes:

(1) “empirical-asymptotic” HF branch is permitted to have slope in the 
1.0-2.5 range; and / or 

(2) complications around the corner are ignored, and “intersection of 
asymptotes” is taken as the corner frequency

This picture from Savage 1972 was not a recommendation, only 
statement of a problem. However, many spectral studies 

actually used it in this way, taking “ω3” as the empirical corner 
position

This is the probable reason why spectral and inversion 
estimates of Ds often do not match (typically 30 bar against 5-15 
bar)
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On the nature of spectral corners in deterministic source models.
Why stochastic fault model is a must?

This picture from Savage 1972 illustrates 

how discontinuities in the displacement 

waveform, (or source time function, STF) are 

related to emergence of spectral corners. 

The preferred waveform b with angular point 

and thus with “ωωωω-2” spectrum, after passing 
to acceleration, produces delta-like 

acceleration spike (red trace, my), nothing 

common with realistic noise-like 

accelerogram. 

The standard textbook STF of trapezoidal 

shape produces precisely four spikes. 

Therefore, deterministic models give no 

hope in creating realistic broadband source 

model. Stochastic models can help.
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First attempts for more realistic spectral families:

strict similarity is rejected

Key feature of the 

new generation of 

spectral models is 

the lack of 

similarity that was 

needed to 

describe real 
earthquke data

Revised (1978-1981)
spectra remind 

Aki1967 spectra at 

M=5,

And show two-corner 

or even two-hump 

shape at M=8(Гусев 1979)
(Gusev 1979)

(Takemura&Koyama1982)

fc1

fc2

fc1

fc2
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More advanced spectral families with no similarity

Shown are “acceleration source” spectra, those reflecting acceleration source time function.

Decay of these spectra at HF part are related to the assumption of “source-controlled f-max” .

Its role was greatly overestimated at that moment; still it can often be recovered from data, 
and this assumption reflects reality.  

fc1 fc1

fc2 fc2(Gusev 1983)

(Papageorgiou&Aki 1983,1985)
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Empirical spectral scaling laws with flat 
accelerogram spectra 

approximating source acceleration shapes

↓ attenuation-

related

f-max

W.USA model

Atkinson 1991 Trifunac 1994

fc1
fc1

fc2 fc2
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Recommended spectral scaling laws 
(Halldorsson&Papageorgiou 2005)

(Halldorsson&Papageorgiou 2005)

f2 is definitively present

but it is correct to assume it 

to scale as  fc ???

fc1

fc2
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Work version of Gusev 2007 (unpublished)
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Compilation of fc2(Mw) scaling:

fc2 ∝ 100.25-0.30Mw ∝ M0
0.17-0.2 ∝ fc1

0.5-0.6
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Kamchatka data (Gusev,Guseva 2014). 

fc1(M):  dlgfc1/dlgM0≈-1/3
common, regular trend;in agreement with the similarity concept

скейлинг в согласии с идеей подобия
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fc2(M):   dlgfc2/dlgM0 ≈ 0.15-0.18 [±0.011] « 1/3

подобие явно нарушено similarity is broken
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fc3(M): dlgfc1/dlgM0≈-0.08±0.013

подобие грубо нарушенo    similarity is broken blatantly
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All three trends side by side (S-wave)
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FIN
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the fire ant Solenopsis invicta workers (A) 

Although both polygyne and monogyne colonies 

displayed positive allometry in head width above the 
eyes, workers from large monogyne ants had a higher 

growth rate (1.23, as opposed to 1.16 for small 

monogyne and 1.17 for polygyne) in relation to the total 

body size. 
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Figure 1: Correlation between maximum lifespan 
(tmax) and typical adult body mass (M) using all 

species (n = 1,701) present in AnAge build 8. Plotted 

on a logarithmic scale. 
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Principles 
for analysis of scaling (2)

Generally, scaling analysis assumes that no intrinsic 

dimensional (spatial, temporal, etc) scales exist within the 

problem under study. 

When a relevant dimensional parameter appears, scaling can 

often identify it, then power law is violated and critical size 

shows itself in a scaling diagram as an anomaly. 
Spectral peak in a spectrum on the background of white noise or power-law behavior is a 
standard example.


