Splitting *f-max* of Kamchatka spectra into site-loss-controlled and fault-controlled components: third corner frequency and ω⁻³ spectra

A.A Gusev^{1,2}, E.M.Guseva²

Petropavlovsk-Kamchatsky, RUSSIA

¹Institute of Volcanology and Seismology, Russian Ac. Sci.

² Kamchatka Branch, Geophysical Service, Russian Ac. Sci.

Starting point: " ω^2 " or "omega-square" model for the shape of far-field earthquake source spectrum after Aki 1967; its generalization by Brune 1970

Single-corner displacement u(f)spectrum after Aki(1967), also the simpler, standard variant after (Brune 1970); $\epsilon=1$ single corner frequency f_{c1}

Two-corner u(f) spectrum, advanced, non-standard variant after (Brune 1970); $\epsilon < 1$ two corner frequencies f_{c1} , f_{c2}

*f*_{c2} is commonly seen in observed spectra

Different scaling of fc1 and fc2

 $f_{c1} \propto M_0^{-1/3}$, similarity holds (Haskell 1964, Aki 1967; and later work)

f_{c2} decays much slower than M₀^{-1/3}; similarity assumption violated (Gusev 1983);

 $f_{c2} \propto M_0^{-1/6}, apprx.$ (Gusev 2013)

Problem:

how f_{c2} scales in a particular region, when processing digital data

Spectral scaling with similarity broken for f_{c2} ; Shown for acceleration source spectra

Existence and scaling of f_{c3}

- Hanks 1982 emphasized the *"f-max"* phenomenon (HF cutoff of *a*(*f*))
- Gusev (1983) and Papageorgiou and Aki (1983) ascribed it to source
- Hough and Anderson (1984) have shown convincingly that site-related loss creates *f-max*
- Still, accumulated evidence suggests that *f-max* is complex and incorporate both *source*-controlled and *site*-controlled components (f_{c3} and $1/\kappa$)

Problems:

- does f_{c3} exist for events in a particular region?
- if yes, how it scales?
- if yes, can one still use the spectral range [fc2, fc3] to determine Q(f)!

Plan of study

- Compile a preliminary attenuation model; use it to correct observed spectra for path-related and site-related loss;
- 2. Estimate f_{c1} , f_{c2} and f_{c3} from individual spectra
- 3. Use the $[f_{c2}, f_{c3}]$ spectral band to extract second approximation of attenuation model; check and verify the acceptable accuracy of the initial model
- 4. Analyse $f_{c1}(Mw)$, $f_{c2}(Mw)$, $f_{c3}(Mw)$ etc

Step 1

Assumed attenuation model for loss factor in S-wave Fourier spectrum:

 $-\delta \ln A(f) = \pi f \kappa_0 + \pi f(r/c)Q^{-1}(f,r)$

where

r - hypocentral distance

 κ_0 – constant loss factor for a site; $\kappa_0 = \ln 2/\pi f_{\text{max-loss}}$

c - wave velocity; and Q(f,r) – path quality factor:

 $Q^{-1}(f, r) = Q_0^{-1}(f/f_0)^{-\gamma} (1+q(r-r_0)/r_0)$

Model was compiled for, and data were analysed from the vicinity of PET ("Petropavlovsk") station (Kamchatka pen.) at *r*=80-220 km

Compilation of preliminary loss model

accepted Q_s(f) model:

in the 1-6 Hz band mostly from (Abubakirov 2005) who used coda-normalized spectal levels of bandfiltered data

in the 5-25 Hz band based on (Gusev Guseva 2011) who analysed kappa values;

accepted trend at r=100 km:

 $Q_{S}(f)=165 f^{0.42}$

also $\kappa_0 = 0.016s$ and slight decay of Q_s^{-1} vs. r Digital records of HN channel (low-gain accelerograph) of IRIS sta. PET of 1993-2005; 80 sps

439 records;

Hypo distance 80-220 km

Depth range 0-200 km, mostly 0-50 km

M_L=4-6.5 (K^{Φ68}=9.5-14)

Why f_{c3} is difficult to notice during processing over log-linear scale

Cases when source acceleration spectrum is apprx. flat up to 25-30 Hz. Omega-square model seems applicable and loss correction seems reasonable

Cases of spectra of clearly the (ω^{-3}) kind (*infrequently*)

Step 3. Checking the attenuation model (for S-waves only) by inversion

Unknowns in inversion: κ_0 , and Q_0 , γ , q in:

 $Q^{-1}(f, r) = Q_0^{-1}(f/f_0)^{-\gamma} (1+q(r-r_0)/r_0)$

Observed/data parameter used in inversion: $\delta \log A = \log A_2 - \log A_1$

where A_2 and A_1 are spectral amplitudes at the ends of the assumedly flat sourceacceleration spectrum segment

Residuals of $\delta \log A$ fitted by the attenuation model got by inversion: histogram and plots of $\delta \log A$ against f_{c3} , r, f_{mean} and M_L

Comparing preliminary and inverted loss models

 $Q_{s}(f|r=100 \text{km})$:

Guess 2013: $Q_S(f)=165 f^{0.42}$ combined with $\kappa_0=0.016$ s

Inverted 2014: $Q_{S}(f)=156 f^{0.55}$ combined with $\kappa_{0}=0.030$ s

preliminary estimates: $Q_0 = 165$, $\gamma = 0.42$; $\kappa_0 = 0.016$ s adjusted estimates: $Q_0 = 156 \pm 33$, $\gamma = 0.55 \pm 0.08$; $\kappa_0 = 0.030 \pm 0.07$ s (change of predicted spectral corrections: negligible

Step 4. $f_{c1}(M)$: $dlgf_{c1}/dlgM_0 \approx -1/3$

common, regular trend; in agreement with the similarity concept

$f_{c2}(M)$: dlgf_{c2}/dlgM₀ \approx 0.15-0.18 [±0.011] \ll 1/3 similarity is definitely violated;

$f_{c3}(M): dlgf_{c1}/dlgM_0 \approx -0.08 \pm 0.013$

no similarity present

All three trends side by side (S-wave) similarity assumption is invalid both for fc2 and fc3, and in different way for each

Two ways of checking the similarity assumption make different results

$$\sigma_a = \frac{E_s}{M_0} \propto \frac{v_{\max}^2(f)(f_{c2} - f_{c1})}{d(f)|_{f=0}}$$

Stress drop
$$\Delta \sigma$$
 vs. *M*: approximate similarity

$$\Delta \sigma \approx \frac{M_0}{R^3} \propto \cdot f_{c1}^3 \cdot d(f)|_{f=0}$$

Possible physics that underlie trends of f_{c2}, f_{c3}

- f_{c2} is probably related to slip pulse width; the trend $f_{c2} \propto f_{c1}^{0.5-0.6}$ suggests that pulse width grows by some mechanism akin to random walk
- f_{c3} is probably related to the lower limit of the size of fault surface heterogeneity, (or else to cohesion zone width, or both) (compare Aki (1983)), ; the trend $f_{c3} \propto f_{c1}^{0.2 \cdot 0.3}$ suggests that these parameters increase with source size, however very slowly. Probably this trend reflect variations in fault surface maturity: the greater slipped distance, the larger is accumulated wear and the lower is upper cutoff of heterogeneity spectrum. (compare Gusev 1990; Matsu'ura 1990,1992).

Conclusions

- 1. A procedure for processing earthquake Fourier spectra is designed that permits separate study of source-controlled and attenuationcontrolled constituents of *f*-max. To enable this kind of processing, attenuation models of lithosphere around PET station for S and P waves were compiled and, for S, verified.
- 2. Corner frequencies f_{c1}, f_{c2}, f_{c3} of source spectra are determined, where possible, for ≈ 400 earthquakes of M=4-6, at hypocenter distances up to 220 km.
- 3. A large fraction of spectra show clear source-controlled *f*-max, or $f_{c3,}$, with values in the range 3-20 Hz. The trend close to $f_{c3} \propto M_0^{-0.08}$ can be seen. Three-corner spectal shape is common, and reminds Haskell's concepts on ω^{-3} asymptotics of spectra
- 4. A large fraction of spectra show clear second corner frequency f_{c2} clearly above common f_{c1} . The trend of the kind $f_{c2} \propto M_0^{-0.15}$ is clearly seen.
- 5. Trends of both f_{c2} , and f_{c3} vs. magnitude indicate definite lack of similarity of spectra.
- 6. Infrequently, source spectra of the (ω^{-3}) kind are observed.

thank you for attention

f_{c3}(**H**)

$$f_{c1}$$
 vs. M

$LV = \log f_{c2} - \log f_{c1}$: log-width of velocity spectrum V(f) vs. M (similarity would result in M-independent LV)

Variation of LV with M causes M-dependence of σ_a at a fixed $\Delta \sigma$