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It is difficult to calculate analytically envelopes of scattered seismic waves from a near earthquake for a simple and
important model of multiple anisotropic scattering in homogeneously scattering space. Monte-Carlo simulation was
carried out for the acoustic case; as a first approximation its results can be used to describe S waves and coda of a near

earthquake.

By means of simulation we can imitate the following features of real envelopes: (1) lack of short initial S-pulse with
‘source’ duration at dimensionless distances p > 1; (2) amplitude attenuation of S waves that is considerably more
rapid than the inverse distance law. The result agrees well with the diffusion model; therefore we can suggest a

universal asymptotic coda shape function.

1. Introduction

No perfectly adequate models are proposed to
date for a theoretical description of a record of a
near earthquake. After studies by Aki (1969) and
Aki and Chouet (1975) it became clear that the
general concept of ‘direct’ wave scattering on ran-
dom heterogeneities of the medium is applicable.
In frames of the simplest model of single isotropic
scattering Aki and Chouet (1975) described coda,
and Kopnichev (1975) and Sato (1977) described
envelope shape after the ‘direct arrival’. Envelope
shape in this model was distance-independent
(after scaling). Kopnichev (1977) proposed for-
mulas for contributions of double and triple
scattering. Sato (1984) took into account the source
directivity function for S waves. Gao et al. (1983)
proposed formulas to account for multiple-
scattered body waves up to multiplicity 7, and also
the approximate asymptotic formuila.

Anisotropy of scatterers (for single scattering)
was taken into account by Sato (1984). Several
studies considered conversion scattering, and the
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scattering on the heterogeneities that were consid-
ered directly as some random field of perturba-
tions of medium density and elastic moduli (Sato,
1984; Malin and Phinney, 1985, etc.). We shall,
however, consider only more primitive phenome-
nological description of the scattering process.

As a whole, for sufficiently small distances and
elapse times, until the single scattering model is
valid, a rather full model is developed. For typical
mean free path value 1 =100 km, ‘small’ means
distances up to 30-50 km and elapse times up to
10-20 s. For greater distances and elapse times
the adequate model is lacking, and the diffusion
model (Aki and Chouet, 1975) is not applicable to
describe near earthquake records in this domain.

As mentioned by Gusev and Lemzikov (1983,
1985), the isotropic scattering model predicts
qualitatively inaccurate record shape: according to
this model, a short direct body wave pulse (with
‘source’ duration) must be observed up to dis-
tances r = (2-3)/. In fact, this pulse, if observed,
can be seen only at distances of 10-30 km, seldom
at 50 km, or (0.1 —0.5)/. This contradiction was



ascribed to the effect of anisotropy of scattering in
the real Earth, and a simple model was proposed,
as a combination of isotropic and ‘Gaussian’ indi-
catrices. In the same study the diffusion model
was proposed to be used as a provisional ‘interpo-
lation model’ between domains of validity of
single-scattering (Born) and diffusion approxima-
tions. Many of the qualitative considerations of
the studies by Gusev and Lemzikov (1983, 1985)
shall be more strongly grounded in the following.

2. Technique of simulation

Essentially, we simulated here the Green’s func-
tion of the non-stationary radiation transport
equation for scalar waves. The usual analogy was
used between propagation of particles and wave-
lets with random phases, and the classical Monte-
Carlo method, well known in neutron physics or
in atmospheric optics, was used. It was realized in
the following way. Simulated particles were re-
peatedly emitted from a fixed point source, then
they propagated through space with simulated
random point scatters (a new set of scatterers was
generated for each trajectory). Positions of each
particle were determined with constant time step,
and distance from the source was computed. Pairs
(time, distance) were recorded in a 2D histogram;
to do this, distance values were quantified with the
distance step equal to 2 X time-step X velocity.
Values of distance and time steps determine the
resolution of obtained envelope curves. The stan-
dard size of the histogram, 70 time by 20 distance
units, giving 1400 space-time compartments (cells),
was always used. Therefore potential receiver
points within a spherical shell of the thickness of
one distance unit were represented by one dis-
tance interval, and the history of the number of
particles in this shell was recorded in one column
of the histogram table.

The simulated particle trajectories were 3D
broken lines consisting of several straight seg-
ments. Each moving simulated particle was ‘ob-
served’ during all 70 time steps; either it left the
largest spherical shell or it did not (it could return).
For each segment, its length L was random and
was drawn from the same exponential distribution
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with density

p(Lyl)=exp(=L/1)/1

This means that the probability of scattering is
constant for any unit volume. As for the direction
of a segment, it was spherically isotropic random
for the first segment. For other segments, direc-
tion was either also isotropic or anisotropic
according to the accepted indicatrix function for a
given simulation run. Let 6 be the angle of scatter-
ing, i.e. the angle between two successive segments
of a trajectory considered as vectors. In the aniso-
tropic case, the random number 6 was generated
according to Rayleigh’s density function (produc-
ing ‘Gaussian’ indicatrix)

p(0)=ab exp(—6%/2 §?) (1)

where the parameter & determines the angular
width of the indicatrix. The & value was constant
for a given simulation run.

After monitoring a sufficient number of trajec-
tories, the accumulated number in each cell of the
histogram was divided by the number of all trajec-
tories / particles and by the volume of the above-
mentioned spherical shell giving a Monte-Carlo
estimate of energy density (per unit energy radia-
ted). We assumed the particle/wave velocity as
constant and equal to unity; in this case the
energy density is equal to the mean spherical
(omnidirectional) radiation intensity. After this
transformation, each column of the table repre-
sents the time history of radiation intensity at a
certain distance, and each row of the table repre-
sents the distance dependence of radiation inten-
sity at a moment of time. The mean free path
value was also accepted to be unity during simula-
tion. Therefore our results were obtained (and are
presented below) as functions of dimensionless
distance p = r/[ and dimensionless time 7= ct/I,
where ¢ is the wave velocity. Observational data
should be converted to these scales to be compara-
ble to the results of simulation.

Anelastic energy loss was not simulated, but it
can be easily accounted for when the quality fac-
tor Q is constant everywhere: the simulated inten-
sity function should be multiplied by exp-
(—27ftQ""). The simulation results are valid for
the whole space; they are applicable also to the
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half-space with a mirror boundary, when the
source is near the boundary and the receiver is on
it.

3. Isotropic case

To model the isotropic case is important from
several points of view:

(1) this is the basic, theoretically simplest case,
and, when 7 < 1, analytical results are known.

(2) Different formulas were proposed to cor-
rect single-scattering results for contribution of
multiple scattered energy.

(3) Different opinions on the applicability of
diffusion approximation: (a) at 7> 1 and (b) at
T=1-3.

In Fig. 1, the simulated asymptotic (7> p,
coda) envelope shape is presented in wide and
narrow elapse time ranges. In Fig. 2, examples of
simulated envelopes are given. Inspection of Fig. 1
leads to the following conclusions:

(1) Kopnichev’s (1977) formula for coda (mul-
tiplicities 1, 2, and 3) is valid for 7 < 0.1 and the
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Fig. 1. Asymptotic intensity functions for scattered waves (case
7> p, coda). (a) in wide, (b) in narrower 7 range. Dimension-
less absolute level of curves is determined by assuming: source
energy =1, velocity ¢ =1, mean free path /=1. Direct wave
intensity function p~2 exp(— p) is plotted also, for distance
p = 7. Born case is the function (2772)~ !, diffusion case is the
function ((47/3)7)”3/2, ‘Born+exp’ case is the function
(27r)~ ! exp(— 1), for Kopnichev and Gao formulas for multi-
ple body wave scattering see (Kopnichev, 1977) and (Gao et
al., 1983). Simulation results coincide with their approximation
by eq. 2. Note that both formulas for multiple scattering were
introduced by their authors as corrections to the ‘Born+exp’
case and not to the ‘Born’ case. So there is no contradiction
when corresponding curves are below the level of the ‘Born’
curve.

formula of Gao et al. (1983) (multiplicities up to
7) is valid for 7 < 0.6. The best and the simplest
approximation for 7 < 0.6 seems to be the initial
Born approximation (without exp(—r7) factor).
This confirms the guess of Aki and Chouet (1975)
that a decrease in the level of single scattered
waves is compensated (in fact, overcompensated)
by an increase in the level of multiple scattered
ones.

(2) The analytical formula of Kopnichev (1975)
and Sato (1977) for the single-scattered envelope
model is applicable up to p=0.5 and becomes
qualitatively invalid at p > 1.

(3) The diffusion approximation gives an accu-
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Fig. 2. Examples of simulated intensity functions for isotropic
scattering case, for different p values. The level of curves is as
in Fig. 1. Horizontal bars denote the size of the space-time
compartment used in the course of simulation of the individual
curve. By dotted lines, diffusion approximation (47r/3)™ /2
exp(— p2/(47/3)) is shown for corresponding p, for 7> p.
K-S is the intensity function of (Kopnichev, 1975) and (Sato,
1977) for single scattering plotted at an arbitrary level. Its
shape does not depend on p in bilog scale; it is given by
x~1In((x +1)/(x — 1)) where x = 7/p. The dashed line corre-
sponds to eq. 2.
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rate coda asymptote at 7> 3; at p > 2 it predicts
qualitatively the whole envelope function shape
(at 7>p), except for an initial delta-like pulse
(the reality of which is doubtful for the Earth).

(4) In accordance with the guess of Gusev and
Lemzikov (1983, 1985), the coda envelope asymp-
tote (7> p) between 7= 0.1 and 7= 3 smoothly
changes its slope from —2 (Born approximation)
to —1.5 (diffusion approximation). (The level of
the diffusion branch on the plots of Gusev and
Lemzikov (1983, 1985) is in error which is cor-
rected here, see Fig. 1.) To describe the smooth
asymptote of Fig. 1, a universal approximating
function is fitted, which is valid for any 7> p
with an accuracy of ~ 10% or better

K2(1+ (k7))
2'77(1(’1')2

1/3.7

I(7) = )

where k=27/167 = 1/1.86.

4. Anisotropic case

Modelling of the anisotropic case for a homo-
geneous medium was undertaken with the follow-
ing aims in mind:

(1) to find out if it is possible to obtain in
frames of the accepted model a set of envelope
functions which are in qualitative agreement with
the observed ones.

(2) If this is possible, to determine the prob-
able value of the parameter § of a law (1).

Simulation was carried out for § =25°, then
after analysis we choose the value § = 50° which
was considered acceptable as a realistic one. The
results are seen in Fig. 3, their inspection shows
the following:

(1) ‘Narrow’ (25°) indicatrix leads to the pro-
nounced decrease of intensity just after the main
‘direct wave’ wavelet. At p =0.3 and 7=1 inten-
sity falls definitely below asymptotic (coda) level.
This phenomenon is not observed really (Rautian
et al., 1981). In the model it is produced by the
low probability of multiple back scattering just
after the moment when wavelets pass by the re-
ceiver point. When 8 = 50° was chosen, this detail
of the curves disappears. In both cases pulse
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widening with distance is observed, and ‘direct
wave’ pulse becomes less and less clear at p = 0.8
— 1.2. Thus, the main qualitative features of real
records are modelled in this case.

(2) In Gusev and Lemzikov (1983) it was sup-
posed that diffusion approximation must also be
valid in the anisotropic case, and that for numeri-
cal agreement one should substitute the / value in
diffusion law by /g = ct,, where ¢, is ‘isotropiza-
tion time’. The ratio /;g//= N, is the number of
scattering acts which is needed for a particle to
forget its initial direction. For the Gaussian indi-
catrix it was speculated that N, is proportional to
87 2. These guesses were confirmed by simulation,
and approximate formula can now be proposed

lig/1=1.3/8%
Therefore, not relating the general question of
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Fig. 3. Examples of intensity functions for anisotropic scattering
case, for § =25° (a) and 50° (b). See Fig. 2 for explanation.

applicability of diffusion theory to the real Earth,
we may note that theoretical grounds for such an
application are present even in the case of aniso-
tropic scattering.

(3) Let us use the /| as the new distance unit,
let py=r/l;g and 1,=1/t; in a similar way. As
was mentioned in Gusev and Lemzikov (1983,
1985), for p>1 and p, <1, the width of the
‘direct’ wave pulse grows as p?, but its energy is
nearly the same as that without scattering, so that
amplitude decreases as p~ 2. For 8 =25°, when
lis/I= N, = 6, this amplitude trend is seen even
up to p =30 (p, = 95).

(4) We can now suppose that experimental de-



termination of the mean free path / from coda
yields /i (and not /). Let /,, = 100 km for rough
estimates (Sato, 1977). Now we can determine the
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Fig. 4. Amplitude attenuation laws in the distance range r =10
—1000 km. Assumed ¢=3.5 km s~! and /=100 km, so the
distance range is 0.1 —10 for p or py. The upper two curves
correspond to homogeneous medium and to the ‘pure’ direct
wave in isotropically scattering medium (p~' exp(— p/2). The
third curve is the simulated amplitude for the isotropic case
corrected for source duration d =1 s. It consists of a ‘direct’
branch practically coinciding with the second curve and the
‘diffusion’ branch with slope —1.5. The position of the point
of branch intersection is defined by the ratio //cd. Upper in
the next bunch of curves is the simulated amplitude for aniso-
tropic (8 = 50 °) case, again corrected for d =1 s, with /15 =100
km. The lower two curves represent the effect of anelastic
absorption. We assumed S-wave source with ™2 spectrum
and corner frequencies 1 (upper) or 3 Hz (lower curve), corre-
sponding roughly to M; =4 or M; =2 earthquakes. Medium
properties: Q =300 f~%° Receiver: standard Wood-Ander-
son seismograph. The lowest two curves are Richer’s calibra-
tion curve for California converted to r argument, and Fedo-
tov’s (1972) S-wave amplitude curve for Kamchatka (depth
0-60 km, for electromagnetic seismograph with 75 =1.2 s). For
rough estimates, one can neglect the difference between the
recording instruments for Kamchatka and California.
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exponent n of amplitude attenuation law A ~ r™".
The distance interval was accepted as r = 20-300
km, and the direct pulse duration at r = 0 km was
accepted as 1 s. For the isotropic case we obtain
n = 1.50 (duration is constant in this case). For the
anisotropic case, for both § =25° and 6§ =50°,
n=1.85. If in this case one takes anelastic loss
into account (let Q =300 f% and source corner
frequency 1 and 3 Hz) then the n value increases
up to 2.05-2.24. This value is in good agreement
with the slope of short-period amplitude curves
(of Richter, Fedotov, etc.) in this distance interval,
see Fig. 4. Therefore, the model of multiple aniso-
tropic scattering provides a theoretical basis for
amplitude attenuation curves of near earthquakes.

5. Conclusion

(1) Monte-Carlo simulation is an efficient
means to obtain theoretical envelope shapes of
near earthquakes.

(2) The isotropic scattering model gives quali-
tatively inaccurate envelopes around the arrival
time. For asymptotic case (coda), a universal en-
velope function is proposed which is valid for any
dimensionless lapse time.

(3) The anisotropic scattering model with a
Gaussian indicatrix of width 50° which enhances
forward scattering produced envelopes that ap-
peared to be realistic.

(4) The diffusion approximation is applicable
for large elapse times in the isotropic case and can
be modified for the anisotropic case; it gives
qualitatively reasonable envelopes for large elapse
times.

(5) The anisotropic scattering model predicts
realistic amplitude attenuation curves for small
near earthquakes.
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